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HOMOGENIZATION OF HEAT TRANSFER PROCESS IN COMPOSITE

MATERIALS

LE NGUYEN KIM HANG

Abstract. In this paper, we adapt the periodic unfolding method to study the asymp-

totic behavior, as ε tends to zero, of a class of stationary heat problems on composite

materials consisting of two connected constituents which are ε-periodically distributed.
The nonlinear transfer condition on the interface is assumed to depend on a real pa-

rameter γ. We first survey compactness results and the relationship between the traces

of two unfolding operators corresponding to the two components. Then, we study the
homogenization and corrector results for the problem for the different values. The ho-

mogenization result for the case γ = 1 completes the previous works in the literature.

1. Introduction

In this work, we investigate a heat diffusion problem in composite materials with a nonlin-
ear transmission condition on the interfacial barrier depending on a real parameter γ. More
precisely, we study the asymptotic behavior, as ε tends to zero, of the following problem:

(P )



−div (Aε∇uε1) + hε1 (x, uε1) = f in Ωε1,

−div (Aε∇uε2) + hε2 (x, uε2) = f in Ωε2,

−Aε∇uε1.nε1 = Aε∇uε2.nε2 = εγ+1hε (x, uε1 − uε2) on Γε,

uεi = 0 on ∂Ω ∩ ∂Ωεi , i = 1, 2,

where γ ≤ 1 and nεi are the unit outward normal to the two connected components Ωεi of
an open bounded set Ω in Rn (n ≥ 3) for i = 1, 2. These components are separated by an
ε-periodic interface Γε. We assume that the heat source f ∈ L2(Ω).

The boundary condition (P )3 means that the heat flux through the interfacial barrier is
continuous and defined via a nonlinear function h of the temperature difference between the
two components of the composite. This assumption is motivated by experimental results
(see for instance [4]). The nonlinear terms are given by hεi (x, uεi ) = hi (x/ε, uεi ) for i = 1, 2;
hε (x, uε1 − uε2) = ε−1h(x/ε, uε1 − uε2) if γ = 1 and hε (x, uε1 − uε2) = h (x/ε, (uε1 − uε2)/ε) if
γ 6= 1, where the functions h, h1 and h2 satisfy some natural growth assumptions.
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In order to study this problem, we adapt the periodic unfolding method to a domain
Ω consisting of two connected components Ωε1 and Ωε2. Let us remind that the periodic
unfolding method was first introduced for fixed domains by Cioranescu, Damlamian and
Griso [5, 6] and then extended to perforated domains [9, 7]. Later, Donato, Le Nguyen
and Tardieu [15] adapted this method to two-component domains (including a connected
component and an unconnected component). In the latter paper, two unfolding operators
were introduced: T ε1 (originally denoted by T ∗ε in [9, 7]) acting on Ωε1 and T ε2 acting on Ωε2,
including the relationship between their traces on the common boundary. One important
feature of these operators is that they map functions defined on oscillating domains into
functions defined on fixed domains. The results in [15] have been recently improved by
Donato and Le Nguyen [16].

Here, we consider the case where both two components of the domain are connected. Such
a domain appears in [18], where a linear model of diffusion in fissured porous media was
studied and in [28], where a similar thermal diffusion problem was suggested. In contrast to
these studies where only one of two components can reach the boundary of the domain Ω, we
allow both components to meet the boundary. This is probably a more natural assumption.

In the present work, we study the homogenization and corrector results for problem (P ) for
γ ≤ 1. The presence of the nonlinear terms h1, h2 and the nonlinear transmission condition
on the interface coupling heat equations on two components make the main difficulties.
The case γ < 1 was studied in [16] with the assumption that one of two components is
unconnected. For γ = 1, the nonlinear jump condition is described somewhat differently
from that in [16]. Homogenization result for this case was announced without any proof in
[28]. Here, we show its detailed proof by unfolding.

Since Ωε2 has the same geometrical structure as Ωε1, the operator T ε2 inherits the com-
pactness results associated with T ε1 stated in [7, 16] (see Theorem 2). As a result, the
homogenization results for problem (P ) are not the same as those in [16] for some cases. In
particular, the homogenized problem for γ ≤ −1 keeps the same. The situation is different
for the case γ ∈ ]−1, 1[ where the unfolded limit of the problem contains an additional
integral term since the unfolded limit of the gradient of the solution is different from that
in [16] (see (3.1) in Theorem 2). For γ = 1, the corresponding homogenized problem is a
system solved by the solution (u1, u2), whose existence and uniqueness are proved by the
Minty-Browder theorem. Consequently, we will show in detail the results only for the cases
γ = 1, γ ∈ ]−1, 1[. For the other cases, we only point out different points. It should be also
noted that in this work, the case γ > 1 is not considered due to the fact that the solution
of the problem is not bounded. We refer to [14] for the idea of renormalization on the heat
source f in the component Ωε2 to obtain a nontrivial limit behavior in this case.

For related linear homogenization problems of elliptic type, we refer the reader to [2, 3,
17, 18, 20, 23, 24, 25, 26, 27]. Parabolic problems can be found in [11, 12, 13, 19, 21, 1, 29].

The remainder of this paper is as follows. In Section 2, we introduce the problem and the
assumptions. Section 3 is devoted to the periodic unfolding method for domains consisting
of two connected components. Finally, we show the homogenization and corrector results
for the problem for different values of the parameter γ in Section 4.

2. Preliminaries

2.1. Notation. Let Ω be an open bounded set with a Lipschitz continuous boundary in Rn
(n ≥ 3) and Y :=

∏n
i=1[0, li[ be a reference cell with li > 0, i = 1, ..., n. We assume that
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Y1 and Y2 are two disjoint connected open subsets of Y with the common boundary Γ such
that Y1 and Y2 reach the boundary ∂Y (see Figure 1). Set

Figure 1. The reference cell Y

∂Y2 = Γ ∪ Γ2, ∂Y1 = Γ ∪ Γ1,

where Γi for i = 1, 2 are the intersections of the boundary ∂Y2 with ∂Y and assume that Γi
is identically reproduced on the opposite faces of Y . Then, the two connected components
of Ω are defined as follows:

Ωε1 = Ω \
⋃
k∈Kε

εY k2 , Ωε2 = Ω\Ωε1, Γε = ∂Ωε1 ∩ Ω

where Kε =
{
k ∈ Zn| εY ki ∩ Ω 6= ∅, i = 1, 2

}
and Y ki = Yi + (k1l1, ..., knln), i = 1, 2.

In order to define the unfolding operators, we follow the notations introduced in [7, 15]:

• K̂ε =
{
k ∈ Zn| εY k ⊂ Ω

}
, Ω̂ε = int

⋃
k∈K̂ε

ε
(
kl + Y

)
, Λε = Ω\Ω̂ε,

• Ω̂εi =
⋃

k∈K̂ε

εY ki , Λεi = Ωεi\Ω̂εi , i = 1, 2.

In the sequel, we denote ε by a positive real sequence which tends to zero and c by a
constant independent of ε. The following usual notations are also employed:

• θi =
|Yi|
|Y |

, i = 1, 2,

• ũ: the zero extension to the whole Ω of a function u defined on Ωε1 or Ωε2,

• χ
ω

: the characteristic function of each open set ω of Rn,

• Mω (f) :=
1

|ω|
∫
ω
f dx, for any open set ω of Rn and for any f ∈ L1 (ω),

• [z]Y := (k1l1, ..., knln) with k1, ..., kn ∈ Z such that {z}Y := z − [z]Y ∈ Y for a.e.
z ∈ Rn,

• M (α, β,O): the set of the n×n matrix-valued functions A in (L∞ (O))n
2

such that,
for any λ ∈ Rn, {

(A (x)λ, λ) ≥ α |λ|2 a.e. in O,

|A (x)λ| ≤ β |λ| a.e. in O.
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2.2. Problem. Let the function f ∈ L2 (Ω) and the matrix field A belong to M (α, β, Y )
with α, β ∈ R, 0 < α ≤ β. Assume that A is Y -periodic, then we define

Aε(x) = A(x/ε) in Ω.

Our goal is to describe the asymptotic behavior, as ε→ 0, of the following problem:

(2.1)



−div (Aε∇uε1) + hε1 (x, uε1) = f in Ωε1,

−div (Aε∇uε2) + hε2 (x, uε2) = f in Ωε2,

−Aε∇uε1.nε1 = Aε∇uε2.nε2 = εγ+1 hε (x, uε1 − uε2) on Γε,

uεi = 0 on ∂Ω ∩ ∂Ωεi , i = 1, 2.

where γ ≤ 1 and nεi are the unit outward normal to the two components Ωεi for i = 1, 2. The
nonlinear transmission condition on the interface coupling heat equations on two components
is described via the function hε in (2.1)3 defined by{

hε (x, uε1 − uε2) = ε−1h(x/ε, uε1 − uε2) if γ = 1,

hε (x, uε1 − uε2) = h
(
x/ε, (uε1 − uε2)/ε

)
if γ 6= 1,

and the remaining nonlinear terms are given by hεi (x, uεi ) = hi (x/ε, uεi ) for i = 1, 2, where
the functions h, h1 and h2 satisfy the following assumptions:

(2.2)

{
h satisfies assumptions (H1) - (H3) ,

h1, h2 satisfies assumptions (H1) and (H4) ,

with (H1)-(H4) given below (see also in [16]).

Assumption H1: The function g (y, s) : Rn × R −→ R satisfies assumption (H1) iff

(i) g is a Carathéodory function,
(ii) g (·, s) is Y−periodic for all s ∈ R,
(iii) g (y, ·) is an increasing function in C1 (R) s.t. g (y, 0) = 0 for a.e. y ∈ Rn.

Assumption H2: The function g (y, s) : Y × R −→ R satisfies assumption (H2) iff there
exists a constant c > 0 and an exponent q, with 1 ≤ q < min

{
2, n

n−2

}
such that∣∣∣∣∂g∂s (y, s)

∣∣∣∣ ≤ c(1 + |s|q−1
)

for a.e. y ∈ Y and for all s ∈ R.

Assumption H3: The function g (y, s) : Y × R −→ R satisfies assumption (H3) iff there
exists a constant c > 0 such that

sg (y, s) ≥ c |s|2 for a.e. y ∈ Y and for all s ∈ R.

Assumption H4: The function g (y, s) : Y × R −→ R satisfies assumption (H4) iff there
exists a constant c > 0 and an exponent p, with 1 ≤ p < +∞ if n = 2 and 1 ≤ p ≤ n+2

n−2

if n > 2, such that∣∣∣∣∂g∂s (y, s)

∣∣∣∣ ≤ c(1 + |s|p−1
)

for a.e. y ∈ Y and for all s ∈ R.
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2.3. Existence-uniqueness result and a priori estimates. Let us first recall some nec-
essary functional spaces introduced in [16].

Definition 1. For every γ ∈ R,

Hε
γ
.
= {u = (u1, u2)| u1 ∈ V ε1 , u2 ∈ V ε2 }

equipped with the norm

‖u‖2Hεγ = ‖∇u1‖2L2(Ωε1)
+ ‖∇u2‖2L2(Ωε2)

+ εγ ‖u1 − u2‖2L2(Γε) ,

where V εi
.
=
{
v ∈ H1 (Ωεi )

∣∣ v = 0 on ∂Ω ∩ ∂Ωεi
}

, for i = 1, 2, endowed with the norms

‖v‖V εi = ‖∇v‖L2(Ωεi )
.

Remark 1. (i) As seen in [7], it should be noted that the Lipschitz condition of ∂Ω
implies that for every open subset Ω0i of Rn such that Ω ⊂ Ω0i and ∂Ω ∩ ∂Ωεi =
∂Ω ∩ Ω0i,

V εi =
{
v ∈ H1(Ωεi )

∣∣∃ v′ ∈ H1(Ωε0i), v
′ = 0 in Ωε0i\Ωεi and v = v′|Ωεi

}
,

where Ωε0i = Ω0i\
⋃
k∈Zn εY

k
i , for i = 1, 2.

(ii) The norm ‖·‖V εi is equivalent to ‖·‖H1(Ωεi )
by constants independent of ε since the

Poincaré inequality holds in the space V εi with a constant c independent of ε, i.e.

‖v‖L2(Ωεi )
≤ c ‖∇v‖L2(Ωεi )

∀v ∈ V εi , for i = 1, 2,

(see [7, Theorem 2.9] for more details).

We now provide an existence and uniqueness result and a priori estimates for the solution
of the problem in the spirit of Theorem 2.6 and Proposition 2.7 in [16].

Theorem 1 ([16]). Let the function h satisfy assumptions (H1), (H2) and the functions h1,
h2 satisfy assumptions (H1), (H4). Suppose further that h or h2 fulfills assumption (H3).
Then, for every fixed ε, the variational formulation of problem (2.1) given by

(2.3)



Find uε = (uε1, u
ε
2) ∈ Hε

γ such that∫
Ωε1

Aε∇uε1∇v1 dx+

∫
Ωε2

Aε∇uε2∇v2 dx+

∫
Ωε1

v1h
ε
1 (x, uε1) dx

+

∫
Ωε2

v2h
ε
2 (x, uε2) dx+ εγ+1

∫
Γε

(v1 − v2)hε (x, uε1 − uε2) dσ

=

∫
Ωε1

fv1 dx+

∫
Ωε2

fv2 dx ∀ (v1, v2) ∈ Hε
γ

has a unique solution uε ∈ Hε
γ .

Remark 2. On contrary to the problem studied in [16], where Ωε2 is not connected, the
uniqueness result for the solution of problem (2.3) does not require the assumption that h
or h2 is strictly increasing thanks to Remark 1.
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Proposition 1 ([25]). Let γ ≤ 1 and assumptions (2.2) hold. If uε = (uε1, u
ε
2) is a weak

solution of problem (2.1), then there exists a positive constant c, independent of ε, such that

(2.4)

{
‖(∇uε1,∇uε2)‖L2(Ωε1)×L2(Ωε2)

≤ c,

‖uε1 − uε2‖L2(Γε) ≤ c ε−γ/2.

3. Unfolding method for domains consisting of two connected components

In this section, we first recall the definition of the unfolding operators T ε1 , T ε2 and T εb
introduced in [7, 15, 16]. As mentioned before, since the component Ωε2 has the same
geometrical structure as Ωε1, the operator T ε2 possesses the same compactness results as
those of T ε1 presented in [7, 15, 16] (see Theorem 2). This leads to some simplifications
in the results concerning the traces of the two unfolding operators comparing to the one in
[15, 16] (see Theorem 3). The result concerning the composed operators T ε1 ◦hε1 still keep the
same, but the one related to T ε2 ◦ hε2 is stronger than that in [16], due to the connectedness
of Ωε2.

3.1. Definition.

Definition 2. For any function φ Lebesgue-measurable on Ωεi , the periodic unfolding op-
erators T εi , i = 1, 2 are defined by the formula

T εi (φ) (x, y) =

{
φ
(
ε
[x
ε

]
Y

+ εy
)

a.e. (x, y) ∈ Ω̂ε × Yi,

0 a.e. (x, y) ∈ Λε × Yi.
For any function φ Lebesgue-measurable on Γε, the periodic boundary unfolding operator

T εb is defined by the formula

T εb (φ) (x, y) =

{
φ
(
ε
[x
ε

]
Y

+ εy
)

a.e. (x, y) ∈ Ω̂ε × Γ,

0 a.e. (x, y) ∈ Λε × Γ.

For the sake of simplicity, we write T εi (ϕ) instead of T εi
(
ϕ|Ωεi

)
, i = 1, 2, for any function

ϕ defined on Ω.
The following proposition states the important properties of the unfolding operators,

whose proof can be consulted in [7, 15].

Proposition 2 ([7, 15]). For p ∈ [1,+∞], the operators T εi , i = 1, 2, are linear and contin-
uous from Lp (Ωεi ) to Lp (Ω× Y ) and

(i) T εi (ϕψ) = T εi (ϕ) T εi (ψ), for every functions ϕ, ψ Lebesgue-measurable on Ωεi ,

(ii) for every ϕ ∈ L1 (Ωεi ),

1

|Y |

∫
Ω×Yi

T εi (ϕ) (x, y) dx dy =

∫
Ω̂εi

ϕ (x) dx =

∫
Ωεi

ϕ (x) dx−
∫

Λεi

ϕ (x) dx,

(iii) for every ϕ ∈ Lp (Ωεi ),

‖T εi (ϕ)‖Lp(Ω×Yi) ≤ |Y |
1/p ‖ϕ‖Lp(Ωεi )

,

Moreover, for p ∈ [1,+∞[, one has
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(iv) for every ϕ ∈ Lp (Ω),

T εi (ϕ) −→ ϕ strongly in Lp (Ω× Yi) ,
(v) if {ϕε} is a sequence in Lp (Ω) such that ϕε −→ ϕ strongly in Lp (Ω), then,

T εi (ϕε) −→ ϕ strongly in Lp (Ω× Yi) ,
(vi) if ϕ ∈ Lp (Yi) is a Y -periodic function and ϕε (x) = ϕ (x/ε), then

T εi (ϕε) −→ ϕ strongly in Lp (Ω× Yi) ,
(vii) if ϕε ∈ Lp (Ωεi ) satisfy T εi (ϕε) ⇀ ϕ̂ weakly in Lp (Ω× Yi), then

ϕ̃ε ⇀ θiMYi (ϕ̂) weakly in Lp (Ω) ,

(for p = +∞, the above result holds in the weak* topology),

(viii) if ϕ ∈W 1,p (Ωεi ), then ∇y [T εi (ϕ)] = εT εi (∇ϕ) and T εi (ϕ) ∈ Lp
(
Ω,W 1,p (Yi)

)
.

Let us now recall the adjoints of T ε1 and T ε2 , which are needed to study the corrector
results for the solution of the problem. Their properties can be found in [7, 15].

Definition 3 (the averaging operators). For p ∈ [1,+∞], the averaging operators Uεi :
Lp (Ω× Yi) 7−→ Lp (Ωεi ), i = 1, 2, are defined as follows:

Uεi (Φ) (x) =


1

|Y |
∫
Y

Φ
(
ε
[x
ε

]
Y

+ εz,
{x
ε

}
Y

)
dz a.e. x ∈ Ω̂εi ,

0 a.e. x ∈ Λεi .

Remark 3. Uεi are almost left-inverses of T εi , i = 1, 2, which means that, for any ϕ ∈ Lp (Ωεi )

Uεi (T εi (ϕ)) (x) =

{
ϕ (x) a.e. x ∈ Ω̂εi ,

0 a.e. x ∈ Λεi .

3.2. Compactness results. Due to the connectedness of Ωε2, the operator T ε2 possesses
the same compactness results as those of T ε1 presented in [16] as follows:

Theorem 2. For any γ ∈ R, if uε = (uε1, u
ε
2) is a bounded sequence in Hε

γ , then, there exists

a subsequence (still denoted ε), ui ∈ H1
0 (Ω) and ûi ∈ L2

(
Ω, H1

per (Yi)
)
, i = 1, 2 such that

(3.1)


T εi (uεi ) −→ ui strongly in L2

(
Ω, H1 (Yi)

)
,

T εi (∇uεi ) ⇀ ∇ui +∇yûi weakly in L2 (Ω× Yi) ,

Zεi =
1

ε
[T εi (uεi )−MΓ (T εi (uεi ))] ⇀ yΓ∇ui + ûi weakly in L2

(
Ω, H1 (Yi)

)
,

where MΓ (ûi) = 0 a.e. in Ω.

Furthermore, if γ < 1, we have

(3.2) u1 = u2.

Proof. The convergences (3.1) are contained in Theorem 2.13 in [7]. The proof of equality
(3.2) is similar to that in [15, Theorem 2.18]. �

Let us emphasize that the convergence of T ε2 (∇uε2) given in (3.1) is not the same as that
in [15, 16], where the limit of T ε2 (∇uε2) in L2 (Ω× Y2) is ∇yu2 with u2 ∈ L2

(
Ω, H1 (Y2)

)
.

And then, by similar arguments as in [15], the relation between the traces of the unfolded
limit of uε1 and uε2 is given below.
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Theorem 3. Let γ ∈ R and uε = (uε1, u
ε
2) be a bounded sequence in Hε

γ . Then, there exists a

subsequence (still denoted ε), ui ∈ H1
0 (Ω) and ûi ∈ L2

(
Ω, H1

per (Yi)
)

such that MΓ (ûi) = 0
a.e. in Ω for i = 1, 2 and the convergences (3.1) hold.

Moreover, if γ < 1, then u1 = u2 and

(i) if γ < −1, we have

(3.3) û1 = û2 on Ω× Γ,

(ii) if γ = −1, there exists ξΓ ∈ L2 (Ω) such that

(3.4)
T ε1 (uε1)− T ε2 (uε2)

ε
⇀ û1 − û2 + ξΓ weakly in L2 (Ω× Γ) .

Remark 4. The results here is not the same as the one in the case of [15, 16], where there
is an additional term yΓ∇u1 in the limit (3.4).

We conclude this section by showing the limit behavior of the unfolded Nemytskii oper-
ators related to the nonlinear terms h1 and h2, which are crucial to prove homogenization
results. The assumption that both components can meet the boundary makes the proof
more technical, the same as that in [16, Proposition 4.7(i)].

Proposition 3. For γ ∈ R, let the function h1 and h2 satisfy assumptions (H1), (H4). If
uε = (uε1, u

ε
2) is a bounded sequence in Hε

γ , then there exists a subsequence (still denoted ε)

and u1, u2 ∈ H1
0 (Ω) such that

(i) T ε1 (hε1 (x, uε1)) −→ h1 (y, u1) strongly in Lt/p (Ω× Y1),

(ii) T ε2 (hε2 (x, uε2)) −→ h2 (y, u2) strongly in Lt/p (Ω× Y2),

where  t = max {2, p} if n = 2,

t ∈
[
max

{
2, n+2

n−2

}
, 2∗
[

if n > 2.

Moreover, if γ < 1, then u1 = u2.

Remark 5. Note that the convergence result concerning h2 is different from that in [16],
where the convergence (ii) takes place in L2/p2(Ω× Y2) only for γ < 1 with 1 ≤ p2 ≤
min{2, n+2

n−2}.

4. Homogenization and corrector results for γ ∈ ]−1, 1]

We present here only the homogenization results for γ = 1 and γ ∈ ]−1, 1[ separately,
which are different from those obtained in [16].

For the case γ ≤ −1, the results keep the same as those in [16], although the convergence
results in Theorem 3 are different from those in the case where Ωε2 is unconnected. As in [16],
the presence of the nonlinear function h of the solution jump is a challenging point in the
homogenization process and Theorem 3 is essential to overcome this difficulty. Note that for
γ = −1, in the unfolded limit problem the function û2 belongs to L2(Ω;H1

per(Y2)) instead of

L2(Ω;H1(Y2)). Let us also remind that this case is a difficult one due to identifying the limit
of the unfolded interface term since we have only the weak convergence of T εb (uε1 − uε2) /ε
in L2(Ω × Γ). Then, as studied in [16] we choose a suitable sequence of test functions to
overcome this and then the homogenized matrix is described in a more complicated way via
a nonlinear function related to the correctors.
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4.1. Homogenization result for the case γ = 1. For this case, thanks to the strong
convergence result of T ε2 (uε2), we can pass to the limit in the unfolded term concerning the
nonlinear function h2, while in [16], we cannot do that and therefore assume that h2 = 0. As
in [18, 28], the homogenized problem is a system in the solution (u1, u2). In order to prove
the existence and the uniqueness of this solution, we apply here the Minty-Browder theorem
together with the lemma about the ellipticity of some homogenized matrices as follows:

Lemma 1. Let A0
γ and B0

γ be the matrix field given by:

(4.1) A0
γej = θ1MY1

(
Aej −A∇χ1j

)
, B0

γej = θ2MY2

(
Aej −A∇χ2j

)
,

where the correctors χ
1j

and χ
2j

, j = 1, ..., n, are the unique solutions of the cell problems,

for i = 1, 2,

(4.2)


−div

(
A (y)∇

(
χ
ij
− yj

))
= 0 in Yi,

A (y)∇
(
χ
ij
− yj

)
.ni = 0 on Γ,

χ
ij

Y − periodic, MΓ

(
χ
ij

)
= 0.

Then there exist two positive numbers α1, α2 such that for any λ ∈ Rn,

(A0
γλ, λ) ≥ α1 |λ|2 ,

(B0
γλ, λ) ≥ α2 |λ|2 .

Proof. The proof is similar to that of Proposition 6.12 in [8] with the remark that Γ1, Γ2

are identically reproduced on opposite faces of Y . �

Theorem 4. For γ = 1, let assumptions (2.2) hold. If uε = (uε1, u
ε
2) is the solution of

problem (2.1), then there exist ui ∈ H1
0 (Ω), ûi ∈ L2

(
Ω, H1

per (Yi)
)

with MΓ(ûi) = 0 a.e. in
Ω, for i = 1, 2, such that the convergences (3.1) hold and (u1, u2, û1, û2) uniquely satisfies:

(4.3)



1

|Y |
∑
i=1,2

∫
Ω×Yi

A (y) (∇ui +∇yûi) (∇ϕi +∇yΦi) dx dy

+
1

|Y |
∑
i=1,2

∫
Ω×Yi

hi(y, ui) ϕi dx dy +
1

|Y |

∫
Ω×Γ

h (y, u1 − u2) (ϕ1 − ϕ2) dx dσy

=

∫
Ω

θ1fϕ1 dx+

∫
Ω

θ2fϕ2 dx ∀ϕi ∈ H1
0 (Ω) , ∀Φi ∈ L2

(
Ω, H1

per (Yi)
)
, i = 1, 2.

The pair (u1, u2) is the unique solution of the following homogenized system:

(4.4)


−div

(
A0
γ∇u1

)
+ θ1MY1

(h1 (·, u1)) + |Γ|
|Y |MΓ(h(·, u1 − u2)) = θ1f in Ω,

−div
(
B0
γ∇u2

)
+ θ2MY2

(h2 (·, u2))− |Γ||Y |MΓ(h(·, u1 − u2)) = θ2f in Ω,

u1 = u2 = 0 on ∂Ω,

with the matrices A0
γ and B0

γ defined by (4.1).

Proof. Let us take vi (x) = ϕi (x) + εωi (x)ψεi (x) , i = 1, 2, as test functions in (2.3), where
ϕi, ωi ∈ D (Ω), ψi ∈ H1

per (Yi), and ψεi (x) = ψi (x/ε).
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From the definition of the unfolding operators, one has, for i = 1, 2

(4.5)


T εi (vi) −→ ϕi strongly in L2 (Ω× Yi) ,

T εi (∇vi) = T εi (∇ϕi) + ε ψiT εi (∇ωi) +∇yψiT εi (ωi)

−→ ∇ϕi +∇yΦi strongly in L2 (Ω× Yi) ,

where Φi (x, y) = ωi (x)ψi (y).
Then, by unfolding∑
i=1,2

∫
Ωεi

Aε∇uεi∇vi dx =
∑
i=1,2

1

|Y |

∫
Ω×Yi

A (y) T εi (∇uεi ) T εi (∇vi) dx dy

−→
∑
i=1,2

1

|Y |

∫
Ω×Yi

A (y) (∇ui +∇yûi) (∇ϕi +∇yΦi) dxdy,(4.6)

and

(4.7)
∑
i=1,2

∫
Ωεi

fvi dx =
∑
i=1,2

1

|Y |

∫
Ω×Yi

T εi (f) T εi (vi) dx dσy −→
∑
i=1,2

∫
Ω

θifϕi dx.

On the other hand, using the convergence results given in Proposition 3 provides∑
i=1,2

∫
Ωεi

hεi (x, uεi ) vi dx =
∑
i=1,2

1

|Y |

∫
Ω×Yi

hi (y, T εi (uεi )) T εi (vi) dx dy(4.8)

−→
∑
i=1,2

1

|Y |

∫
Ω×Yi

hi(y, ui) ϕi dx dy.

Taking into account the trace properties and the convergences (3.1)1 in Theorem 2, we have

T εb (uε1 − uε2) −→ u1 − u2 strongly in L2(Ω× Γ),

which implies, by the classical result in [22],

h(y, T εb (uε1 − uε2)) −→ h(y, u1 − u2) strongly in L2/q(Ω× Γ).

Hence,

ε

∫
Γε
h
(x
ε
, uε1 − uε2

)
(v1 − v2) dσx =

1

|Y |

∫
Ω×Γ

h (y, T εb (uε1 − uε2)) T εb (v1 − v2) dx dσy

−→ 1

|Y |

∫
Ω×Γ

h (y, u1 − u2) (ϕ1 − ϕ2) dx dσy.(4.9)

By virtue of the convergences (4.6)-(4.9), we pass to the limit as ε → 0 in the variational
formulation (2.3) for (v1, v2) chosen as above. Then using the density arguments, we obtain
the limit problem (4.3).

We are now in position to identify the homogenized problem solved by u1.
Firstly, we choose ϕ1 = ϕ2 ≡ 0 in (4.3) and get

1

|Y |
∑
i=1,2

∫
Ω×Yi

A (y) (∇ui +∇yûi)∇yΦi dx dy = 0, ∀Φi ∈ L2
(
Ω;H1

per(Yi)
)
,
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which provides, for i = 1, 2,
divy [A (y) (∇yûi (x, y) +∇ui (x))] = 0 a.e. in Ω× Yi,

A (y) [∇yûi (x, y) +∇ui (x)]ni = 0 a.e. on Ω× Γ,

ûi (x, ·) Y -periodic, MΓ (ûi) = 0 a.e. in Ω.

Then, the forms of û1 and û2 are given as follows:

(4.10) û1 (x, y) = −
n∑
j=1

∂u1

∂xj
(x)χ

1j
(y) , û2 (x, y) = −

n∑
j=1

∂u2

∂xj
(x)χ

2j
(y) ,

where χ
1j

and χ
2j
, j = 1, ..., n, are the unique solutions of the cell problems (4.2).

Next, taking Φ1 = Φ2 ≡ 0 in (4.3) we have

1

|Y |
∑
i=1,2

∫
Ω×Yi

A (y) (∇ui +∇yûi)∇ϕi dx dy +
1

|Y |
∑
i=1,2

∫
Ω×Yi

hi(y, ui) ϕi dx dy

+
1

|Y |

∫
Ω×Γ

h (y, u1 − u2) (ϕ1 − ϕ2) dx dσy =
∑
i=1,2

∫
Ω

θifϕidx ∀ϕ1, ϕ2 ∈ H1
0 (Ω) .

By substituting (4.10) into (4.11), we deduce

(4.11)

∫
Ω

A0
γ∇u1∇ϕ1 dx+

∫
Ω

B0
γ∇u2∇ϕ2 dx+

|Γ|
|Y |

∫
Ω

(ϕ1 − ϕ2)MΓh(·, u1 − u2) dx

+θ1

∫
Ω

ϕ1MY1
h1(·, u1) dx+ θ2

∫
Ω

ϕ2MY2
h2(·, u2) dx

=

∫
Ω

θ1fϕ1 dx+

∫
Ω

θ2fϕ2 dx, ∀ϕ1, ϕ2 ∈ H1
0 (Ω) .

Then, (4.4) follows from (4.11) by choosing ϕ1 ≡ 0 and ϕ2 ≡ 0 successively.

Now, let us pass to proving the existence and the uniqueness of the solution (u1, u2) of
problem (4.11), which implies that the convergences (3.1) hold for the whole sequence ε. We
apply the Minty-Browder theorem for the operator κ defined by

κ : u = (u1, u2) ∈ Q = H1
0 (Ω)×H1

0 (Ω) 7−→ Q′

where

〈κ(u), ϕ〉Q′,Q =

∫
Ω

A0
γ∇u1∇ϕ1 dx+

∫
Ω

B0
γ∇u2∇ϕ2 dx+

|Γ|
|Y |

∫
Ω

(ϕ1 − ϕ2)MΓh(·, u1 − u2) dx

+ θ1

∫
Ω

ϕ1MY1
h1(·, u1) dx+ θ2

∫
Ω

ϕ2MY2
h2(·, u2) dx

−
∫

Ω

θ1fϕ1 dx−
∫

Ω

θ2fϕ2 dx ∀ϕ = (ϕ1, ϕ2) ∈ Q,

with the space Q equipped by the following norm

‖ϕ‖Q =
(
‖∇ϕ1‖2L2(Ω) + ‖∇ϕ2‖2L2(Ω)

)1/2 ∀ϕ = (ϕ1, ϕ2) ∈ Q.

It is necessary to remark that if h (y, ·) : R −→ R is continuous and monotone for a.e. y ∈
Rn, so is the function δ : R −→ R defined by δ (s) =MΓ (h (·, s)). Then, the continuity and
monotonicity ofMY1

h1(·, s) and MY2
h2(·, s) in s follow from assumption (H1). Moreover,
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Lemma 1 gives the ellipticity of the matrices A0
γ and B0

γ . Thus, it is straightforward to
prove that the operator κ is bounded, continuous, monotone and coercive so that problem
(4.11) has a solution (u1, u2) ∈ H1

0 (Ω)×H1
0 (Ω). The uniqueness of (u1, u2) comes from the

fact that if u and v are two solutions of (4.11), we have 〈κ(u)− κ(v), ϕ〉Q′,Q = 0 for any

ϕ ∈ Q. Then, taking ϕ ≡ u − v and using the ellipticity of A0
γ and B0

γ together with the

Poincaré inequality in H1
0 (Ω), one derives that u = v.

Hence, (4.4) admits a unique solution (u1, u2) and (4.10) provides the uniqueness of ûi
for i = 1, 2, which implies the convergences of the whole sequence in (3.1). �

4.2. Homogenization result for the case γ ∈ ]−1, 1[.

Theorem 5. Let γ ∈ ]−1, 1[ and assumptions (2.2) hold. If uε = (uε1, u
ε
2) is the solution of

problem (2.1), then there exist u1 ∈ H1
0 (Ω) and ûi ∈ L2

(
Ω, H1

per (Yi)
)
, i = 1, 2, such that

(4.12)

{
T εi (uεi ) −→ u1 strongly in L2

(
Ω, H1 (Yi)

)
,

T εi (∇uεi ) ⇀ ∇u1 +∇yûi weakly in L2 (Ω× Yi) ,

where the triplet (u1, û1, û2) is the unique solution of the problem

(4.13)



Find u1 ∈ H1
0 (Ω) , ûi ∈ L2

(
Ω, H1

per (Yi)
)

with MΓ (ûi) = 0 a.e. in Ω such that,

1

|Y |
∑
i=1,2

∫
Ω×Yi

A (y) (∇u1 +∇yûi) (∇ϕ+∇yΦi) dx dy

+
∑
i=1,2

1

|Y |

∫
Ω×Yi

hi (y, u1)ϕ dx dy =

∫
Ω

f (x)ϕ (x) dx

∀ϕ ∈ H1
0 (Ω) , ∀Φi ∈ L2

(
Ω, H1

per (Yi)
)
, i = 1, 2

and u1 is the unique solution of the following homogenized problem:

(4.14)

{
−div

(
(A0

γ +B0
γ)∇u1

)
+ θ1MY1

(h1 (·, u1)) + θ2MY2
(h2 (·, u1)) = f in Ω,

u1 = 0 on ∂Ω,

with the matrices A0
γ and B0

γ defined by (4.1).

Proof. The proof is similar to that in [16]. The only difference is that here, the limit of
T ε2 (∇uε2) in L2(Ω × Y2) given by Theorem 2 is not zero anymore, so that an additional
integral term over Ω× Y2 appears in the unfolded limit (4.13). Then, the coefficient matrix
of the homogenized problem is the sum of the ones in the two independent Neuman problems
(4.2), which is different from the one given in [16, Corollary 5.10]. �

Remark 6. For γ ∈ ]−1, 1], by unfolding, we have the convergences of the temperature field
and the flux as follows:

(4.15)


ũεi ⇀ θiui weakly in L2(Ω), i = 1, 2,

Aε∇̃uε1 ⇀ A0
γ∇u1 weakly in

(
L2 (Ω)

)n
,

Aε∇̃uε2 ⇀ B0
γ∇u2 weakly in

(
L2 (Ω)

)n
.

Moreover, if γ ∈ ]−1, 1[, then u1 = u2.
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4.3. Convergence of the energy and corrector results.

Theorem 6. Under the assumptions of Theorem 4 for γ = 1 and the assumptions of
Theorem 5 for γ ∈ ]−1, 1[, if uε = (uε1, u

ε
2) is the solution of problem (2.1), then we have the

convergence of the energy

(4.16)

lim
ε→0

(∫
Ωε1

Aε∇uε1∇uε1 dx+

∫
Ωε2

Aε∇uε2∇uε2 dx
)

=
1

|Y |
∑
i=1,2

∫
Ω×Yi

A (y) (∇ui +∇yûi) (∇ui +∇yûi) dx dy,

and

(4.17)


lim
ε→0

(∫
Λε1

|∇uε1|
2
dx+

∫
Λε2

|∇uε2|
2
dx
)

= 0,

T εi (∇uεi ) −→ ∇ui +∇yûi strongly in L2 (Ω× Yi) , for i = 1, 2.

Moreover, the following corrector results hold

(4.18)



∥∥∥∥∇uε1 −∇u1 +
n∑
i=1

Uε1
(∂u1

∂xi

)
∇yχ1i

(
{ ·
ε

}
Y

)

∥∥∥∥
L2(Ωε1)

−→ 0,∥∥∥∥∇uε2 −∇u2 +
n∑
i=1

Uε2
(∂u2

∂xi

)
∇yχ2i

(
{ ·
ε

}
Y

)

∥∥∥∥
L2(Ωε2)

−→ 0.

Furthermore, if γ ∈ ]−1, 1[, then u1 = u2.

Proof. The above results are proved due to similar arguments as those used in [6, 7, 15].
For the case γ = 1, the strong convergence of the unfolded solution sequence T ε2 (uε2) makes
the proof simplier than that in [15]. �

Remark 7. For the case γ < −1, the convergence of the energy and the corrector result for
the solution is the same as those in the linear case [15]. The case γ = −1 remains an open
problem due to the fact that the weak convergence of

(
T ε1 (uε1) − T ε2 (uε2)

)
/ε does not allow

to pass straightforward to the limit in the nonlinear term h.
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