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ON THE MODULUS OF CONTINUITY OF SOLUTIONS TO THE

n-LAPLACE EQUATION

ANGELA ALBERICO - ANDREA CIANCHI - CARLO SBORDONE

Abstract. Solutions to the n-Laplace equation with a right-hand side f are considered.

We exhibit the largest rearrangement-invariant space to which f has to belong for every

local weak solution to be continuous. Moreover, we find the optimal modulus of continuity
of solutions when f ranges in classes of rearrangement-invariant spaces, including Lorentz,

Lorentz-Zygmund and various standard Orlicz spaces.

1. Introduction

The aim of the present note is to announce some recent results dealing with continuity
properties of local weak solutions to the n-Laplace equation in domains in Rn, with n ≥ 2.

Let Ω be an open subset of Rn having finite Lebesgue measure |Ω|. Without loss of
generality, we suppose that |Ω| = 1 throughout. We deal with local weak solutions u ∈
W 1,n(Ω) to the n-Laplace equation

(1.1) −div (|∇u|n−2∇u) = f(x) in Ω,

where f is a function from
(
W 1,n(Ω)

)∗
, the dual of the Sobolev space W 1,n(Ω).

A function u ∈W 1,n(Ω) is called a local weak solution to equation (1.1) if

(1.2)

∫
Ω

|∇u|n−2∇u · ∇φdx =

∫
Ω

fφ dx

for every φ ∈W 1,n
0 (Ω)

⋂
L∞(Ω).

Precise regularity properties of local weak solutions to the n-Laplace equation (1.1) have
been the object of a number of contributions over the last few years (see, e.g., [1, 4, 9, 11,
12, 17]). In particular, in dimension n = 2, a local weak solution u to (1.1) is known to be
continuous if f belongs to the Zygmund space L(logL)(Ω) [1, 4] (we refer to Section 2 below
for the necessary background on the function space framework involved in our discussion).
By contrast, if n ≥ 3, the continuity of u is not guaranteed under the corresponding assump-
tion f ∈ L(logL)n−1(Ω), as shown by counterexamples contained in [11]. A strengthening
of this assumption has been shown in [11] to suffice for the continuity of local weak solutions
to (1.1). Further refinements are contained in [12].
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Among other results in connection with solutions to (1.1), we are able to complement and
enhance statements of [11] and [12]. In particular, we prove that a condition on f ensuring
the continuity of solutions to (1.1), exhibited in [12], is in fact also necessary. Moreover,
we improve a result on the modulus of continuity of solutions when f belongs to Zygmund
spaces, established in [11], and find the optimal one.
With this regard, we prove that any local weak solution u to (1.1), with f ∈ L(logL)n−1+ε(Ω),
is locally uniformly continuous in Ω if ε > 0, with a modulus of continuity not exceeding

(1.3)
(

1 + log 1
s

)− ε
n−1

near 0

(see Theorem 9, Section 3). In [11], the weaker conclusion was derived that solutions u have
a modulus of continuity bounded by

(1.4)
(

1 + log 1
s

)− ε
n

near 0.

Moreover, we show that the modulus of continuity ϕ given by (1.3) is optimal.
More generally, we investigate on continuity properties of local weak solutions to the n-

Laplace equation (1.1) with f in various classes of function spaces. We provide conditions for
the right-hand side f , in customary classes of rearrangement-invariant function spaces, for
local weak solutions u to be continuous. The relevant conditions are also shown to be sharp
in most cases. Moreover, we find the optimal modulus of continuity of local weak solutions
to (1.1) when f belongs to customary families of rearrangement-invariant spaces, including
the Lorentz-Zygmund spaces L(r,q) (logL)

α
(Ω), and various standard Orlicz spaces.

As a matter of fact, all the above-mentioned results for local weak solutions to the n-
Laplace equation are special cases of more general theorems which hold for local weak
solutions to the p-Laplace equation

(1.5) −div (|∇u|p−2∇u) = f(x) in Ω,

with 2 ≤ p ≤ n and f ∈
(
W 1,p(Ω)

)∗
.

However, in order to simplify our exposition, here we limit ourselves to deal with the case
when p = n. This is in fact a borderline case, which presents some interesting peculiar
features.
We refer the reader to the forthcoming paper [3] for a detailed presentation of our contribu-
tions, and for the proofs of our results. Let us just mention here that our approach combines
pointwise gradient estimates for the gradient of solutions to p-Laplace type equations es-
tablished in [14], Sobolev type embeddings into spaces of continuous functions from [8], and
one-dimensional Hardy type inequalities involving various Banach function norms which can
be found in [7, 10].

2. Background

In this section we recall a few basic definitions and properties about functions and function
spaces that we will take into account.

Let Ω be a measurable subset of Rn having finite measure (without loss of generality, we
suppose that |Ω| = 1), and let g be a real-valued measurable function in Ω. The decreasing
rearrangement of g is the function g∗ : [0,+∞)→ [0,+∞] defined as

g∗(s) = sup{t ≥ 0 : |{x ∈ Ω : |g(x)| > t}| > s} for s ≥ 0.
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In other words, g∗ is the (unique) non increasing, right-continuous function in [0,+∞)
equidistributed with g. By g∗∗ : (0,+∞) → [0,+∞] we denote the function given by
g∗∗(s) = 1

s

∫ s
0
g∗(r) dr for s > 0.

A quasi-normed function space X(Ω) on Ω ⊂ Rn is a linear space of measurable functions
on Ω equipped with a quasi-norm ‖ · ‖X(Ω) satisfying the following properties:

(i) ‖g‖X(Ω) > 0 if g 6= 0;

‖λg‖X(Ω) = |λ|‖g‖X(Ω) for every λ ∈ R and g ∈ X(Ω);

‖g + h‖X(Ω) ≤ c(‖g‖X(Ω) + ‖h‖X(Ω)) for some constant c ≥ 1 and

for every g, h ∈ X(Ω);

(ii) 0 ≤ |h| ≤ |g| a.e. in Ω implies ‖h‖X(Ω) ≤ ‖g‖X(Ω);

(iii) 0 ≤ gk ↗ g a.e. implies ‖gk‖X(Ω) ↗ ‖g‖X(Ω) as k −→ +∞;

(iv) if G is a measurable subset of Ω and |G| <∞, then ‖χG‖X(Ω) <∞;

(v) for every measurable subset G of Ω with |G| <∞, there exits a constant C such that∫
G
|g| dx ≤ C‖g‖X(Ω) for every g ∈ X(Ω).

We denote by χG the characteristic function of a measurable subset G of Ω, and we define

‖g‖X(G) = ‖gχG‖X(Ω)

for every measurable function g on Ω.
Moreover, we denote byXloc(Ω) the space of measurable functions g in Ω such that ‖g‖X(G) <
∞ for every compact set G ⊂ Ω. If the relation (i) holds with c = 1 the functional ‖ · ‖X(Ω)

is a norm which makes X(Ω) a Banach space.
A quasi-normed function space (in particular, a Banach function space) X(Ω) is called

rearrangement-invariant if there exists a quasi-normed function space X(0, |Ω|), called the
representation space of X(Ω), having the property that

(2.1) ‖g‖X(Ω) = ‖g∗‖X(0,|Ω|)

for every g ∈ X(Ω). Obviously, if X(Ω) is a rearrangement-invariant quasi-normed space,
then

(2.2) ‖g‖X(Ω) = ‖h‖X(Ω) if g∗ = h∗.

We refer to [5] for a detailed exposition of the theory of rearrangement-invariant spaces.
Note that, for customary spaces X(Ω), an expression for the norm ‖·‖X(0,|Ω|) is immediately

derived from equation (2.1), via elementary properties of rearrangements.
If X(Ω) and Y (Ω) are rearrangement-invariant spaces, then

(2.3) X(Ω) ⊂ Y (Ω) if and only if X(Ω)→ Y (Ω).
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Let ν be a weight, namely a non-negative continuous function on (0,+∞) and let us
denote

(2.4) V(t) =

∫ t

0

ν(s) ds for t ∈ (0,∞).

Let σ ∈ (0,+∞) and let ν be a weight. We define the so-called classical Lorentz spaces
Λσ(ν) and Γσ(ν) and the weak Lorentz spaces Λσ,∞(ν) and Γσ,∞(ν) as a space endowed
with the quantities

(2.5)



‖g‖Λσ(ν) =

(∫ 1

0

(g∗(t))
σ
ν(t) dt

)1/σ

‖g‖Λσ,∞(ν) = sup
0<t<1

g∗(t)V(t)1/σ

‖g‖Γσ(ν) =

(∫ 1

0

(g∗∗(t))
σ
ν(t) dt

)1/σ

‖g‖Γσ,∞(ν) = sup
0<t<1

g∗∗(t)V(t)1/σ

for a measurable function g in Ω. Note that, by Fubini’s theorem,

(2.6) ‖ · ‖Γ1(ν)(Ω) = ‖ · ‖Λ1(ν̃)(Ω) where ν̃(t) =
∫ 1

t
ν(s)
s ds.

Likewise, for σ ∈ (0,∞),

(2.7)


‖ · ‖Λσ,∞(ν)(Ω) = ‖ · ‖Λ1,∞(ν̂)(Ω)

where ν̂(t) = 1
σV(t)

1
σ−1ν(t).

‖ · ‖Γσ,∞(ν)(Ω) = ‖ · ‖Γ1,∞(ν̂)(Ω)

The quantities defined in (2.5) are not always norms. For example, for σ ≥ 1, ‖g‖Λσ(ν)(Ω)

is a norm if and only if ν is non-increasing. For σ ∈ (1,∞), Λσ(ν)(Ω) and Λσ,∞(ν)(Ω) are
equivalent to a Banach space, respectively, if and only if

(2.8) tσ
∫ 1

t

s−σν(s) ds ≤ C
∫ t

0

ν(s) ds

for some C and all t > 0.
Furthermore, for σ = 1, Λ1(ν)(Ω) and Λ1,∞(ν)(Ω) are equivalent to a Banach space, respec-
tively, if and only if

(2.9)
1

t

∫ 1

t

ν(s) ds ≤ C

s

∫ s

0

ν(τ) dτ for 0 < s ≤ t

for some C and all t > 0.
Whereas Γσ(ν)(Ω) and Γσ,∞(ν)(Ω) are equivalent to a Banach space, respectively, if and
only if σ ≥ 1.

The most familiar examples of classical Lorentz spaces are the standard Lorentz spaces
L(r,q)(Ω) with r, q ∈ (0,∞], more in general, the Lorentz-Zygmund spaces L(r,q)(logL)α(Ω).
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Given r, q ∈ (0,∞] and α ∈ R, define

(2.10) ‖g‖L(r,q) (logL)α(Ω) = ‖s
1
r−

1
q
(
1 + log 1

s

)α
g∗∗(s)‖Lq(0,|Ω|)

for a measurable function g in Ω. If r, q ≥ 1 and α ∈ R, the space L(r,q)(logL)α(Ω) is a
rearrangement-invariant space endowed with the norm (2.10). In particular, the Lorentz-
Zygmund space L(r,q)(logL)0(Ω) reduces to the standard Lorentz space L(r,q)(Ω), and, if
r > 1, the Lorentz space L(r,r)(Ω) agrees with the Lebesgue space Lr(Ω) (up to equivalent
norms). Observe that, instead, L(1,1)(Ω) 6= L1(Ω). Actually, L(1,1)(Ω) is equivalent to
L(logL)(Ω).

A function A : [0,∞)→ [0,∞] is called a Young function if it has the form

(2.11) A(t) =

∫ t

0

a(τ)dτ for t ≥ 0,

for some non-decreasing, left-continuous function a : [0,∞)→ [0,∞] which is neither identi-
cally equal to 0 nor to∞. Clearly, any convex (non trivial) function from [0,∞) into [0,∞],
which is left-continuous and vanishes at 0, is a Young function.
The Orlicz space LA(Ω), associated with a Young function A, is the Banach function space
of those real-valued measurable functions g in Ω for which the Luxemburg norm

‖g‖LA(Ω) = inf

{
λ > 0 :

∫
Ω

A

(
|g(x)|
λ

)
dx ≤ 1

}
is finite.
In particular, LA(Ω) = Lr(Ω) if A(t) = tr for some r ∈ [1,∞), and LA(Ω) = L∞(Ω) if
A(t) = 0 for t ∈ [0, 1] and A(t) =∞ for t > 0.

Moreover, if A(t) is equivalent to tr
(
1 + log 1

t

)α
near infinity, where either r > 1 and α ∈ R,

or r = 1 and α ≥ 0, then LA(Ω) agrees with the Zygmund space Lr (logL)
α

(Ω). Note that

Lr (logL)
α

(Ω) agrees with L(r,r) (logL)
α+1

(Ω), up to equivalent norms.

3. Main results

We begin our discussion on exhibiting a sharp assumption on the right-hand side f en-
suring the continuity of the local weak solutions to the n-Laplace equation

−div (|∇u|n−2∇u) = f(x) in Ω.

The relevant assumption is that f belongs to the quasi-normed space L(1, 1
n−1 )(Ω) and this

condition is sharp in the sense that L(1, 1
n−1 )(Ω) is the largest rearrangement-invariant class

to which f has to belong for every local weak solution u to (1.1) to be continuous in Ω. Here
we state the following result.

Theorem 1. Let n ≥ 2. Then L(1, 1
n−1 )(Ω) is the largest rearrangement-invariant class

X(Ω) contained in
(
W 1,n(Ω)

)∗
such that for every f ∈ X(Ω), any local weak solution to

equation (1.1) is continuous.

Remark 1. A theorem from [12] yields the continuity of local weak solutions to (1.1) when

f ∈ L(1, 1
n−1 )(Ω). Theorem 1 complements the result from [12] by showing the optimality of

the space L(1, 1
n−1 )(Ω).
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Now we focus on the necessary and sufficient conditions for the right-hand side of the
n-Laplace equation (1.1), for local weak solution u to be continuous. The relevant results
involving the classical Lorentz spaces Γσ(ν)(Ω), Λσ(ν)(Ω), Γσ,∞(ν)(Ω) and Λσ,∞(ν)(Ω),
associated with a weight function ν and a power σ ∈ (0,∞) are contained in the next
theorems.
In what follows, we make use of the notation

Vσ(t) =

∫ t

0

ν(s) ds+ tσ
∫ 1

t

s−σν(s)ds for t ∈ (0, 1).

Theorem 2. Let 0 < σ <∞ and let ν be a weight. Assume that

(3.1)



sup
0<t<1

t
(
1 + log 1

t

)n−1

Vσ(t)
1
σ

<∞ if 0 < σ ≤ 1
n−1 , n ≥ 2;

∫
0

t
σ

σ(n−1)−1
−1

Vσ(t)
1

σ(n−1)−1

dt <∞ if 1
n−1 < σ ≤ 1, n > 2;

∫
0

t
σ

σ(n−1)−1
−1 (1 + log 1

t

) 1
σ(n−1)−1

Vσ(t)
1

σ(n−1)−1

dt <∞ if σ ≥ 1, n > 2;

∫
0

t
(
1 + log 1

t

) 1
σ−1

Vσ(t)
1

σ−1

dt <∞ if σ > 1, n = 2.

If f ∈ Γσ(ν)(Ω), then every local weak solution u ∈W 1,n(Ω) to (1.1) is continuous.

Conversely, if σ ≥ 1, Γσ(ν)(Ω) ⊂
(
W 1,n(Ω)

)∗
, and for every f ∈ Γσ(ν)(Ω) any local weak

solution to (1.1) is continuous, then (3.1) holds.

Theorem 3. Let 0 < σ <∞ and let ν be a weight. Assume that

(3.2)

∫
0

(
sup
s≥t

1

s

(∫ s

0

ν(τ) dτ

) 1
σ

)−1
dt

t
<∞.

If f ∈ Γσ,∞(ν)(Ω), then every local weak solution u ∈W 1,n(Ω) to (1.1) is continuous.

Conversely, if σ ≥ 1, Γσ,∞(ν)(Ω) ⊂
(
W 1,n(Ω)

)∗
, and for every f ∈ Γσ,∞(ν)(Ω) any local

weak solution to (1.1) is continuous, then (3.2) holds.
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Theorem 4. Let 0 < σ <∞ and let ν be a weight. Assume that
(3.3)

sup
0<t<1

t
(
1 + log 1

t

)n−1

V(t)
1
σ

<∞ if 0 < σ ≤ 1
n−1 , n ≥ 2;

∫
0

sup
0<s≤t

[(
sσ

V(s)

) 1
σ(n−1)−1

](
1 + log

1

t

) 1
σ(n−1)−1 dt

t
<∞ if 1

n−1 < σ ≤ 1, n > 2;

∫
0

(
t

V(t)

) 1
σ−1

(
1 + log

1

t

) σ
σ−1

dt <∞ if σ > 1, n = 2;

∫
0

(∫ t

0

(
s

V(s)

)σ′−1

ds

) σ−1
σ(n−1)−1(

1 + log
1

t

) 1
σ(n−1)−1 dt

t
<∞ if σ > 1, n > 2.

If f ∈ Λσ(ν)(Ω), then every local weak solution u ∈W 1,n(Ω) to (1.1) is continuous.
Conversely, if either σ > 1 and (2.8) holds, or σ = 1 and (2.9) holds, Λσ(ν)(Ω) ⊂(
W 1,n(Ω)

)∗
, and for every f ∈ Λσ(ν)(Ω) any local weak solution to (1.1) is continuous,

then (3.3) holds.

Remark 2. Note that if ν is (equivalent to) a non-increasing weight, condition in (3.3)
for σ = 1 and n > 2 simply reduces to∫

0

[
(1 + log 1

t )
1
t

∫ t
0
ν(s) ds

] 1
n−2

dt

t
<∞ ,

and assumption (2.9) is certainly fulfilled since Λ1(ν)(Ω) is a Banach space.

Remark 3. The continuity of u when f belongs to some space Λ1(ν)(Ω) has also been
studied in [12]. The condition exhibited in [12] has a more implicit form, and is only sufficient
for the continuity of u.

Example 1. Assume that n > 2 and f ∈ Λ1
((

1+log 1
t

)n−1
ω(t)

)
(Ω) for some slowly vary-

ing non-increasing function ω in the sense of [6] (this is certainly the case if limt→0+
t ω′(t)
ω(t) =

0). By [6, Theorem 1.5.11]∫ t

0

(
1 + log 1

s

)n−1
ω(s) ds ≈ t

(
1 + log 1

t

)n−1
ω(t) as t→ 0.

By Theorem 4, any local weak solution u ∈W 1,n(Ω) to equation (1.1) is continuous, provided
that condition (3.3) is satisfied, namely

(3.4)

∫
0

dt

t
(
1 + log 1

t

)
ω(t)

1
n−2

<∞.

For instance, the choice

(3.5) ω(t) = `2
(

1
t

)n−2 · · · `k
(

1
t

)n−2+ε
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for k ≥ 2 and for any ε > 0 is admissible, where `k is inductively defined as

(3.6) `1(s) = max{1, log s}, `k(s) = max{1, `k−1(s)} k ≥ 2,

for s > 0.
This recovers a result of [12]. On the other hand, discontinuous (in fact, locally un-

bounded) solutions to equation (1.1) may exist if ω is defined as in (3.5), with ε = 0.
Let us emphasize that discontinuous solutions may exist with this choice of ε even if, on the
right-hand side of (3.5), an infinite product extended to all k ≥ 2 appears, namely if

(3.7) ω(t) =

∞∏
k=2

`k
(

1
t

)n−2

for t > 0. Indeed, condition (3.4) can be shown to fail for such ω. This last example is
closely related to a question raised in [12, Remark 5.2] about the case when the right-hand
side of (1.1) belongs to an Orlicz space associated with a Young function defined in terms
of an infinite product of logarithms.

Theorem 5. Let 0 < σ <∞ and let ν be a weight. Assume that

(3.8)

∫
0

(
1

t

∫ t

0

(∫ s

0

ν(τ) dτ

)− 1
σ

ds

) 1
n−1

t
1

(n−1)
−1 dt <∞.

If f ∈ Λσ,∞(ν)(Ω), then every local weak solution u ∈W 1,n(Ω) to (1.1) is continuous.

Conversely, if either σ > 1 and (2.8) holds, or σ = 1 and (2.9) holds, Λσ,∞(ν) ⊂
(
W 1,n(Ω)

)∗
,

and for every f ∈ Λσ,∞(ν)(Ω) any local weak solution to (1.1) is continuous, then (3.8) holds.

We now address the problem of the continuity of solutions to the n-Laplace equation in
the case when f belongs to an Orlicz space.

Theorem 6. Let A be a Young function. Assume that
A(t) ≥ Ct log(1 + t) for t ≥ 1 if n = 2

∫ ∞( t

tA′(t)−A(t)

) 1
n−2 dt

t
<∞ if n > 2.

If f ∈ LA(Ω), then any local weak solution u ∈W 1,n(Ω) to equation (1.1) is continuous.

Let us now discuss the question of the modulus of continuity of solutions to (1.1). With
this regard, we find the optimal modulus of continuity of solutions to (1.1) when f be-
longs to a wide class of rearrangement-invariant spaces, including Lorentz-Zygmund spaces
L(r,q) (logL)

α
(Ω), and various standard Orlicz spaces. Specifically, we obtain estimates of

the form

‖u‖C0,ϕ(Bρ) ≤ C
(
‖f‖

1
n−1

X(B2ρ) + ‖∇u‖L1(B2ρ)

)
,

for every ball B2ρ ⊂⊂ Ω, where C0,ϕ(Bρ) denotes the space of uniformly continuous functions
with modulus of continuity ϕ, X(Ω) is a rearrangement-invariant space, and C is a positive
constant.
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Some definitions about the space C0,ϕ(Ω) are needed in the statement below. A modulus
of continuity ϕ : (0,∞) → (0,∞) is a function equivalent (up to multiplicative constants)

near 0 to a non-decreasing function and such that lims→0+ ϕ(s) = 0 and lim sup
s→0+

s

ϕ(s)
<∞.

The Banach space C0,ϕ(Ω) is the set of the measurable functions g on Ω for which the
semi-norm

‖g‖C0,ϕ(Ω) = sup
x, y ∈ Ω
x 6= y

|g(x)− g(y)|
ϕ(|x− y|)

(3.9)

is finite. Note that moduli of continuity which are equivalent (up to multiplicative constants)
near 0 yield the same spaces (up to equivalent norms).

In the case when ϕ(s) = sa with a ∈ (0, 1], the space C0,ϕ(Ω) coincides with the classical
Hölder space C0,a(Ω). In particular, C0,1(Ω) is the space of Lipschitz continuous functions

in Ω. Moreover, C0,ϕ
loc (Ω) denotes the space of those functions which belong to C0,ϕ(Ω′) for

every open set Ω′ ⊂⊂ Ω.
Henceforth, a norm ‖|∇u|‖X(Ω) will simply be denoted by ‖∇u‖X(Ω).

Theorem 7. Let f ∈ Γσ(ν)(Ω) with 0 < σ <∞. Let u ∈ W 1,n(Ω) be a local weak solution
to equation (1.1).
(j) Assume that the function ϕ defined as
(3.10)

ϕ(s) '



∫ sn

0

t
(σ(n−1))′

n −1

(∫ 1

t

τ−
σ′
n′ ν(τ)−

1
σ−1 dτ

) σ−1
σ(n−1)−1

dt

 1
(σ(n−1))′

if σ > 1, n ≥ 2;

(∫ sn

0

t
(n−1)′
n −1 1[

inft<τ<1

(
τ1/n′ν(τ)

)](n−1)′−1
dt

) 1
(n−1)′

if σ = 1, n > 2;

sup
0<t<1

min
{
t1/2, s

}
inft<τ<1

(
τ1/2ν(τ)

) if σ = 1, n = 2,

for s near 0, is finite, and, in the last case, it also satisfies lims→0 ϕ(s) = 0. Then u ∈
C0,ϕ
loc (Ω), and there exists a constant C such that

(3.11) ‖u‖C0,ϕ(Bρ) ≤ C
(
‖f‖

1
n−1

Γσ(ν)(B2ρ) + ‖∇u‖L1(B2ρ)

)
for every B2ρ ⊂⊂ Ω.
(jj) In particular, if

(3.12) ‖t−1/n′ν(t)−1/σ)‖Lσ′ (0,1) <∞,

then u ∈ Liploc(Ω), and there exists a constant C such that

(3.13) ‖u‖C0,1(Bρ) ≤ C
(
‖f‖

1
n−1

Γσ(ν)(B2ρ) + ‖∇u‖L1(B2ρ)

)
for every B2ρ ⊂⊂ Ω.
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Theorem 8. Let f ∈ Γσ,∞(ν)(Ω) with 0 < σ < ∞. Let u ∈ W 1,n(Ω) be a local weak
solution to equation (1.1). Assume that the function ϕ defined as

(3.14) ϕ(s) =

∫ sn

0

t−
1
n′

(∫ 1

t

τ−
1
n′ V(τ)−

1
σ dτ

) 1
n−1

dt

for s near 0, is finite. Then u ∈ C0,ϕ
loc (Ω), and there exists a constant C such that

(3.15) ‖u‖C0,ϕ(Bρ) ≤ C
(
‖f‖

1
n−1

Γσ,∞(ν)(B2ρ) + ‖∇u‖L1(B2ρ)

)
for every B2ρ ⊂⊂ Ω.

In particular, for right-hand sides f from Lorentz-Zygmund spaces, we have the following
result. Here, we agree upon the notation “ 1

∞ = 0”.

Theorem 9. Let f ∈ L(r,q)(logL)α(Ω) with 1 ≤ r ≤ n, 1 ≤ q ≤ ∞, α ∈ R and n ≥ 2. Let
u ∈W 1,n(Ω) be a local weak solution to equation (1.1).
Part I: Assume that the function ϕ defined as

(3.16) ϕ(s) '



(
1 + log 1

s

)−α+n−1− 1
q

n−1 if r = 1, 1 ≤ q ≤ ∞, α > n− 1− 1
q ;

s
n(r−1)
r(n−1)

(
1 + log 1

s

)− α
n−1 if 1 < r < n, 1 ≤ q ≤ ∞, α ∈ R;

s
(
1 + log 1

s

)−α+1− 1
q

n−1 if r = n, 1 ≤ q ≤ ∞, α < 1
q′ ;

s
(
1 + log

(
1 + log 1

s

)) 1− 1
q

n−1 if r = n, 1 < q ≤ ∞, α = 1
q′

for s near 0, is finite. Then, u ∈ C0,ϕ
loc (Ω) and there exists a constant C such that

(3.17) ‖u‖C0,ϕ(Bρ) ≤ C
(
‖f‖

1
n−1

L(r,q)(logL)α(B2ρ)
+ ‖∇u‖L1(B2ρ)

)
for every B2ρ ⊂⊂ Ω.
Part II: In particular, if one of the following conditions is satisfied:

(3.18)


r = n, q = 1, α ≥ 0 ;

r = n, q > 1, α > 1
q′ ;

r > n, 1 ≤ q ≤ ∞, α ∈ R,

then u ∈ Liploc(Ω), and there exists a constant C such that

(3.19) ‖u‖C0,1(Bρ) ≤ C
(
‖f‖

1
n−1

L(r,q)(logL)α(B2ρ)
+ ‖∇u‖L1(B2ρ)

)
for every B2ρ ⊂⊂ Ω.
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Proposition 1. Let f ∈ L(r,q)(logL)α(Ω) with 1 ≤ r ≤ n, 1 ≤ q ≤ ∞, α ∈ R and
n ≥ 2. The modulus of continuity ϕ defined as in (3.16) is optimal, provided that one of the
following alternatives holds:

(3.20)


r = 1, 1 ≤ q ≤ ∞, α > n− 1− 1

q (r, q, n) 6= (1, 1, 2);

1 < r < n, 1 ≤ q ≤ ∞, α ∈ R;
r = n, q = 1, α < 0, .

This means that, if ψ is another modulus of continuity such that (3.17) holds for every

f ∈ L(r,q)(logL)α(Ω), and any local weak solution u to (1.1), then C0,ϕ
loc (Ω) ⊆ C0,ψ

loc (Ω).

Remark 4. Theorem 9 overlaps with results from [13] and [17]. Specifically, [13, Corol-
lary 8.1] deals with the case when f belongs to a Marcinkiewicz space, corresponding to
the choice q = ∞ and α = 0 in Theorem 9. The proof in [13] is based on decay estimates
for solutions and on nonlinear potential techniques. Data f from Marcinkiewicz spaces are
also the object of [17, Theorem 4.1]. Moreover, [17, Theorem 4.2] is concerned with right-
hand sides f from Lebesgue spaces, which is included as the special case when r = q and
α = 0 in Theorem 9. The approach of [17] makes use of a compactness argument, which
enables to relate the decay of the solutions to the equations in question to that of solutions
to homogeneous problems with vanishing right-hand side.

Acknowledgments. We thank the referee for carefully checking the manuscript and for
several helpful suggestions.
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“Federico II”, Via Cintia, I-80126 Napoli
E-mail address: sbordone@unina.it


