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INFINITELY MANY PERIODIC SOLUTIONS FOR A FRACTIONAL

PROBLEM UNDER PERTURBATION

VINCENZO AMBROSIO

Abstract. We discuss the existence of infinitely many periodic weak solutions for a

subcritical nonlinear problem involving the fractional operator (−∆ + I)s on the torus
TN . By using an abstract critical point result due to Clapp [14], we prove that, in spite

of the presence of a perturbation h ∈ L2(TN ) which breaks the symmetry of the problem
under consideration, it is possible to find an unbounded sequence of periodic (weak)

solutions.

1. Introduction

In the past years there has been a considerable amount of research related to the role
of symmetry in obtaining multiple critical points of symmetric functionals associated to
ordinary and partial differential equations. For instance, semilinear problems of the type

(1.1)

{
Lu = f(x, u) + h in Ω
u = 0 on ∂Ω

,

where L is uniformly elliptic, Ω is a smooth bounded domain in RN , f(x, u) behaves like
|u|q−2u with q ∈ (2, 2N

N−2 ), and h ∈ L2(Ω) is a perturbation, has been investigated by many

authors by using topological and variational methods; see for instance [8, 9, 19, 25].
In this paper we focus our attention on the effect of a perturbation which destroys the
symmetry of the following nonlinear fractional problem

(1.2) (−∆ + I)su = f(x, u) + h(x) on TN ,
where TN = RN/ZN is the N -dimensional torus, N ≥ 2, s ∈ (0, 1), and f : TN × R→ R is
a function satisfying the following hypotheses:

(f1): f is a continuous function and f(x,−t) = −f(x, t) for all x ∈ TN and t ∈ R;
(f2): there exist p ∈ (1, 2∗s − 1), where 2∗s = 2N

N−2s , and a1, a2 > 0 such that for any

x ∈ TN and t ∈ R
|f(x, t)| ≤ a1 + a2|t|p;

(f3): there exist µ > 2 and r0 > 0 such that

0 < µF (x, t) ≤ tf(x, t)

for x ∈ TN , |t| ≥ r0, where F (x, t) =
∫ t

0
f(x, τ)dτ .
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Here we assume that the perturbation

(1.3) h ∈ L2(TN )

and that p satisfies the following condition

(1.4)
(N + 2s)− p(N − 2s)

N(p− 1)
>

µ

µ− 1
.

We notice that (f1) and (f3) imply the existence of constants a3, a4, a5 > 0 such that

(1.5)
1

µ
(tf(x, t) + a3) ≥ F (x, t) + a4 ≥ a5|t|µ

for all t ∈ R.
The operator (−∆ + I)s on TN is defined for any u ∈ C∞(TN ) by setting

(−∆ + I)su(x) =
∑
k∈ZN

(|k|2 + 1)scke
ıkx

where ck =
∫
TN u(x)e−ık·xdx are the Fourier coefficients of u. This operator can be extended

by density on the Hilbert space

Hs(TN ) =

{
u =

∑
k∈ZN

cke
ık·x ∈ L2(TN )

∣∣∣[u]2Hs(TN ) :=
∑
k∈ZN

|k|2s|ck|2 <∞

}
.

The study of fractional and non-local operators of elliptic type received immensely growing
attention recently, because of their strong connection with real-world problems. These op-
erators, arise in several contexts such as phase transition phenomena, population dynamics,
game theory, mathematical finance, chemical reactions of liquids, geophysical fluid dynamics,
quantum mechanics; see [16] and references therein for more details and applications.
In spite of the fact that there are many papers dealing with superlinear problems involving
non-local operators [5, 10, 11, 17, 18, 22, 23], there are few results concerning the multiplicity
of solutions for a non-local boundary problem under the effect of a perturbation. The only
results which we know are due to Servadei [21], that proved the existence of infinitely many
solutions to the problem{

(−∆)sRNu− λu = f(x, u) + h in Ω
u = 0 on RN \ Ω

,

where s ∈ (0, 1), Ω ⊂ RN is a Lipschitz bounded open set, (−∆)sRN is the fractional Lapla-

cian, λ ∈ R, f is a subcritical nonlinearity and h ∈ L2(Ω) is a perturbation, and Colorado
et al. [15] which studied existence and multiplicity of solutions for the following fractional
critical problem involving the spectral Laplacian (−∆)sΩ{

(−∆)sΩu = |u|
4s

N−2su+ h in Ω
u = 0 on ∂Ω

under appropriate conditions on the size of h. We point out that the non-local operators
(−∆)sRN and (−∆)sΩ appearing in the above problems are different; see [24].

The aim of this paper is to give a further result in this direction, considering a non-local
problem with periodic boundary conditions, under the effect of a not small perturbation.
Our main result can be stated as follows:
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Theorem 1. Let f satisfying (f1)-(f3) and let h ∈ L2(TN ). Assume that p satisfies
the relation in (1.4). Then, (1.2) possesses an unbounded sequence of periodic solutions
(uj)j∈N ⊂ Hs(TN ).

Let us observe that when h = 0, the existence of infinitely many solutions to (1.2) can be
obtained by using standard critical point theory for even functionals [1].
Our purpose is to investigate (1.2) in the case h 6= 0, that is when we have a lack of symmetry.
In order to do this, we will use a variant of the Mountain Pass Theorem due to Clapp [14]:

Theorem 2. [14] Let V be a G-Hilbert space with V G = {0}, and let V1 ⊂ V2 ⊂ · · · ⊂
Vk ⊂ . . . be a sequence of finite dimensional G-invariant linear subspaces of V . Here V G :=
{x ∈ V : gx = x for all g ∈ G} is the set of fixed points of V in G. Let J : V → R be a
C1-functional which satisfies the following conditions

(i): J verifies the Palais-Smale condition (PS)a above a for some a > 0, that is any
sequence (xn) in V such that J(xn) ⊂ [a, b] for some b ∈ R and such that J ′(xn)→ 0
as n→∞ has a convergent subsequence;

(ii): There are constants γ > 0 and µ > 1 such that for all x ∈ V and g ∈ G

|J(x)− J(gx)| ≤ γ(|J(x)|
1
µ + 1);

(iii): There are constants β > 0, θ > µ
µ−1 , j0 ≥ 1 such that for all j ≥ j0

sup
ρ≥0

inf{J(x) : x ∈ V ⊥j−1, ‖x‖ = ρ} ≥ βjθ;

(iv): For every j ≥ 1 there exists Rj > 0 such that Φ(x) ≤ 0 for all x ∈ Vj: ‖x‖ ≥ Rj;
(v): There exists a fixed admissible representation W of G such that for all j ≥ j0,

Vj ∼= ⊕ji=1W .

Then J has an unbounded sequence of critical values.

This result can be read as follows: if J is not too far away from being G-invariant and if
the mountain range is steep enough, then J can still have an unbounded sequence of critical
values.
In order to prove Theorem 1, we will introduce the following functionals defined on Hs(TN )

I(u) =
1

2
‖u‖2Hs(TN ) −

∫
TN

F (x, u)dx−
∫
TN

hudx

and

J(u) =
1

2
‖u‖2Hs(TN ) −

∫
TN

F (x, u)dx−
∫
TN

ψ(u)hudx,

where ψ is a suitable functional such that ψ(u) = 1 if u is a critical point of I.
By considering the antipodal action of G = Z2 on Hs(TN ), we will show that J satisfies the
assumptions of Theorem 2 and that large critical values of the modified functional J are
critical values of I.
We would like to note that in [2, 3, 4, 6, 7] the existence of periodic solutions to fractional
problems of the type

(1.6) (−∆ + I)su = f(x, u) on TN ,

has been obtained by using variational methods after transforming (1.6) in a degenerate
elliptic equation with nonlinear Neumann boundary conditions via a Caffarelli-Silvestre type
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extension [12] in periodic setting. In this paper however, we prefer to analyze the problem
directly in Hs(TN ) so that we can adapt the techniques developed in [19].

The paper is organized as follows: in Section 2 we present some preliminary facts concerning
the fractional Sobolev spaces on torus, and in Section 3 we give the proof of Theorem 1.

2. Preliminaries

2.1. Fractional Sobolev spaces on torus. In this section we collect some preliminary
results concerning the fractional Sobolev spaces on torus.
Let s ∈ (0, 1) and N ≥ 2. Let u ∈ C∞(TN ). As usual, we identify TN with [0, 2π]N , and the
functions on TN with functions on RN that are periodic with period 2π in each coordinate
x1, . . . , xN , that is u(x+ 2πei) = u(x) for all x ∈ RN and i = 1, . . . , N .
Then we know that

u(x) =
∑
k∈ZN

cke
ık·x,

where

ck =

∫
TN

u(x)e−ık·xdx (k ∈ ZN )

are the Fourier coefficients of u. We define the fractional Sobolev space Hs(TN ) as the
closure of C∞(TN ) under the norm

‖u‖2Hs(TN ) :=
∑
k∈ZN

(|k|2 + 1)s |ck|2.

Let us observe that Hs(TN ) is a Hilbert space with respect to the inner product

〈u, v〉Hs(TN ) =
∑
k∈ZN

(|k|2 + 1)sckd̄k

for any u =
∑
k∈ZN cke

ık·x and v =
∑
k∈ZN dke

ık·x belonging to Hs(TN ). Finally we use the
notation

[u]2Hs(TN ) =
∑
k∈ZN

|k|2s |ck|2

to indicate the semi-norm of u.
Now, we recall the following embeddings

Theorem 3. (Fractional Sobolev embeddings on torus) The inclusion of Hs(TN ) in Lq(TN )
is continuous for any q ∈ [1, 2∗s] and compact for any q ∈ [1, 2∗s).

Proof. We give a simple proof of this result. Let u =
∑
k∈ZN cke

ık·x be a smooth function

on TN such that
∫
TN u dx = 0, and let v =

∑
k∈ZN dke

ık·x ∈ L
2N
N+2s (TN ).

By applying the Cauchy-Schwartz inequality, we can see that

|(u, v)L2(TN )| =
∣∣∣∑
|k|≥1

ckd̄k

∣∣∣ =
∣∣∣∑
|k|≥1

|k|s|k|−sckd̄k
∣∣∣

≤
(∑
|k|≥1

|k|2s|ck|2
) 1

2
(∑
|k|≥1

|k|−2s|dk|2
) 1

2

= [u]Hs(TN )‖(−∆)−
s
2 v‖L2(TN ).(2.1)
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Now, by the Hardy-Littlewood-Sobolev inequality we know that

(2.2) ‖(−∆)−
s
2 v‖L2(TN ) ≤ C‖v‖

L
2N
N+2s (TN )

for some constant C > 0.
Combining (2.1) and (2.2) we get

|(u, v)L2(TN )| ≤ C[u]Hs(TN )‖v‖
L

2N
N+2s (TN )

.(2.3)

Taking v = |u|
N+2s
N−2s−1u ∈ L

2N
N+2s (TN ), we have

|(u, v)L2(TN )| = ‖u‖
2N
N−2s

L
2N
N−2s (TN )

and

‖v‖
L

2N
N+2s (TN )

= ‖u‖
N+2s
N−2s

L
2N
N−2s (TN )

,

so (2.3) becomes

(2.4) ‖u‖
L

2N
N−2s (TN )

≤ C[u]Hs(TN ).

This allows us to deduce that the embedding of Hs(TN ) into Lq(TN ) is continuous for any
q ∈ [1, 2∗s].
Finally, we show that Hs(TN ) is compactly embedded in Lq(TN ) for any q ∈ [1, 2∗s). By
using the interpolation inequality and (2.4), we know that for every q ∈ (2, 2∗s)

‖u‖Lq(TN ) ≤ ‖u‖θL2(TN )‖u‖
1−θ
L2∗s (TN )

≤ C‖u‖θL2(TN )‖u‖
1−θ
Hs(TN )

for some θ ∈ (0, 1). Therefore, it suffices to verify that Hs(TN ) is compactly embedded in
L2(TN ) to obtain the desired result.
Let uj ⇀ 0 in Hs(TN ) as j →∞. Then

(2.5) lim
j→∞

|cjk|
2(|k|2 + 1)s = 0 ∀k ∈ ZN

and

(2.6)
∑
k∈ZN

|cjk|
2(|k|2 + 1)s ≤ C ∀j ∈ N.

Fix ε > 0. Then there exists ν > 0 such that (|k|2 + 1)−s < ε for |k| > ν. By (2.6) we have∑
k∈ZN

|cjk|
2 =

∑
|k|≤ν

|cjk|
2 +

∑
|k|>ν

|cjk|
2

=
∑
|k|≤ν

|cjk|
2 +

∑
|k|>ν

|cjk|
2(|k|2 + 1)s(|k|2 + 1)−s

≤
∑
|k|≤ν

|cjk|
2 + Cε.

By (2.5) we deduce that
∑
|k|≤ν |c

j
k|2 < ε for j large. So uj → 0 in L2(TN ) as j →∞.

�
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It is well known (see [20, 26]) that the powers of a non-negative and self-adjoint operator
in a bounded domain are defined through the spectral decomposition using the powers of
the eigenvalues of the original operator. Since (−∆ + I)−s is a positive compact self-adjoint
operator in L2(TN ), it is easy to show that the following result holds:

Theorem 4 (Spectral Theorem).

(i): The operator (−∆ + I)s has a countable family of eigenvalues {λh}h∈N which can
be written as an increasing sequence of positive numbers

0 < λ1 < λ2 ≤ · · · ≤ λh ≤ λh+1 ≤ . . . .

Each eigenvalue is repeated a number of times equal to its multiplicity (which is
finite).

(ii): λh = µsh for all h ∈ N, where {µh}h∈N is the increasing sequence of eigenvalues
of −∆ + I.

(iii): λ1 = 1 is simple, λh = µsh → +∞ as h→ +∞,
(iv): The sequence {uh}h∈N of eigenfunctions corresponding to λh is an orthonormal

basis of L2(TN ) and an orthogonal basis of Hs(TN ).
Let us note that {uh, µh}h∈N are the eigenfunctions and eigenvalues of −∆ + I.

(v): For any h ∈ N, λh has finite multiplicity, and there holds

λh = min
u∈V ⊥h \{0}

‖u‖2Hs(TN )

‖u‖2
L2(TN )

(Rayleigh’s principle)

where

Vh = span{u1, · · · , uh}
and

V ⊥h = {u ∈ Hs(TN ) : 〈u, uj〉Hs(TN ) = 0, for j = 1, . . . , h− 1}.

(vi): For any h ∈ N, the h-eigenvalue can be characterized as follows:

λh = max
u∈Vh\{0}

‖u‖2Hs(TN )

‖u‖2
L2(TN )

.

3. Proof of Theorem 1

This last section is devoted to the proof of our main result.
Let us introduce the following functional

I(u) =
1

2
‖u‖2Hs(TN ) −

∫
TN

F (x, u) dx−
∫
TN

hu dx(3.1)

defined for u ∈ Hs(TN ). Clearly, I ∈ C1(Hs(TN ),R) in view of the assumptions on f .
We begin proving the following

Lemma 1. Let u be a critical point of I. Then there is a constant a6 depending on ‖h‖L2(TN )

such that

(3.2)

∫
TN

[F (x, u) + a4] dx ≤ 1

µ

∫
TN

[uf(x, u) + a3] dx ≤ a6(I(u)2 + 1)1/2
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Proof. By using (1.5) and the fact that u is a critical point of I, we can see that

I(u) = I(u)− 1

2
I ′(u)u

≥
(1

2
− 1

µ

)∫
TN

[uf(x, u) + a3] dx− 1

2
‖h‖L2(TN )‖u‖L2(TN ) − a7.

(3.3)

Since µ > 2 and by applying the Hölder and Young inequalities we deduce that for any ε > 0

I(u) ≥ a8

∫
TN

(uf(x, u) + a3) dx− a9 − Cε‖h‖νL2(TN ) − ε‖u‖
µ
Lµ(TN )

,(3.4)

where 1
µ + 1

ν = 1. Choosing ε such that 2ε = µa5a8, and by using (3.4), (1.5) and the

Schwartz inequality, we obtain the claim.
�

Now, we modify the functional I as follows. Let χ ∈ C∞(R,R) such that χ(t) = 1 for t ≤ 1,
χ(t) = 0 for t > 2 and −2 < χ′ < 0 for t ∈ (1, 2).
For u ∈ Hs(TN ), we set

Q(u) = 2a6(I(u)2 + 1)
1
2

and we define the following functionals on Hs(TN )

ψ(u) = χ

(
Q(u)−1

∫
TN

[F (x, u) + a4] dx

)
and

J(u) =
1

2
‖u‖2Hs(TN ) −

∫
TN

F (x, u) dx−
∫
TN

ψ(u)hu dx.

We notice that (3.2) implies that ψ(u) = 1 if u is a critical point of I, and in particular
J(u) = I(u).
Let us consider the antipodal action of G = Z2 on W = R, which is admissible by the
Borsuk-Ulam Theorem.
In order to show that J verifies the condition (ii) of Theorem 2, we give the following
preliminary result

Lemma 2. If u ∈ suppψ, then

(3.5)
∣∣∣∫

TN
hu dx

∣∣∣ ≤ α1(|I(u)|
1
µ + 1)

where α1 depends on ‖h‖L2(TN ).

Proof. By using the Schwartz and Hölder inequalities and (1.5), we obtain that for any
u ∈ Hs(TN ) ∣∣∣∫

TN
hu dx

∣∣∣ ≤ ‖h‖L2(TN )‖u‖L2(TN ) ≤ α2‖u‖Lµ(TN )

≤ α3

(∫
TN

(F (x, u) + a4) dx
) 1
µ

.(3.6)

Let us note that, if u ∈ suppψ, we get

(3.7)

∫
TN

(F (x, u) + a4) dx ≤ 4a6(I(u)2 + 1)1/2 ≤ α4(|I(u)|+ 1).
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Then, taking into account (3.6) and (3.7), we have the thesis.
�

At this point we can prove that J satisfies the following property:

Lemma 3. There is a constant β1, depending on ‖h‖L2(TN ), such that for all u ∈ Hs(TN ),

(3.8) |J(u)− J(−u)| ≤ β1(|J(u)|
1
µ + 1).

Proof. By using the definition of J and the assumption (f1), we can see that

(3.9) |J(u)− J(−u)| = (ψ(u) + ψ(−u))
∣∣∣∫

TN
hu dx

∣∣∣.
Then, by Lemma 2, we deduce that

(3.10) ψ(−u)
∣∣∣∫

TN
hu dx

∣∣∣ ≤ α1ψ(−u)(|I(u)|
1
µ + 1).

Let us observe that by the definitions of I(u) and J(u) we know that

(3.11) |I(u)| ≤ |J(u)|+ 2
∣∣∣∫

TN
hu dx

∣∣∣,
so, by using (3.10) we deduce

(3.12) ψ(−u)
∣∣∣∫

TN
hu dx

∣∣∣ ≤ α2ψ(−u)
(
|J(u)|

1
µ +

∣∣∣∫
TN

hu dx
∣∣∣ 1µ + 1

)
.

Thus, by using the Young’s inequality, we can see that the term
∫
TN hu dx on the right-hand

side of (3.12) can be absorbed by the left-hand side. Similarly, we can deduce a corresponding
estimate for the ψ(−u) term in (3.9), so we can infer that (3.8) holds.

�

Now, we show that large critical values of J are critical values of I. Firstly we prove the
following preliminary result:

Lemma 4. There are constants M0, α0 > 0, depending on ‖h‖L2(TN ), such that if M ≥M0,
J(u) ≥M and u ∈ suppψ, then I(u) ≥ α0M .

Proof. Clearly, if u ∈ suppψ, then

(3.13) I(u) ≥ J(u)−
∣∣∣∫

TN
hu dx

∣∣∣.
Hence (3.5) and (3.13) imply

I(u) + α1|I(u)|1/µ ≥ J(u)− α1 ≥M/2(3.14)

for M0 large enough. If I(u) ≤ 0,

αν1
ν

+
1

µ
|I(u)| ≥ α1|I(u)|1/µ ≥M/2 + |I(u)|(3.15)

which gives a contradiction if M0 > 2αν1ν
−1. As a consequence, I(u) > 0 and

I(u) > M/4 or I(u) ≥
( M

4α1

)µ
which implies the Lemma since µ > 2.

�
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Lemma 5. There is a constant M1 > 0 such that if J(u) ≥ M1 and J ′(u) = 0, then
J(u) = I(u) and I ′(u) = 0.

Proof. We are going to prove that ψ(u) = 1 and ψ′(u) = 0. Taking into account the
definition of ψ, this happens if

(3.16) Q(u)−1

∫
TN

(F (x, u) + a4) dx ≤ 1.

Now, we show that (3.16) is satisfied.
Let us note that

J ′(u)u = ‖u‖2Hs(TN ) −
∫
TN

uf(x, u)− (ψ(u) + ψ′(u)u)hu dx,(3.17)

where

ψ′(u)u = χ′
(
Q(u)−1

∫
TN

(F (x, u) + a4) dx
)

Q(u)−2
[
Q(u)

∫
TN

uf(x, u) dx− (2a6)2
(∫

TN
(F (x, u) + a4) dx

)
Q(u)−1I(u)I ′(u)u

]
.

Then, we can regroup the terms as

J ′(u)u = (1 + T1(u))‖u‖2Hs(TN ) − (1 + T2(u))

∫
TN

uf(x, u) dx− (ψ(u) + T1(u))

∫
TN

hu dx,

(3.18)

where

T1(u) = χ′
(
Q(u)−1

∫
TN

(F (x, u) + a4) dx
)

(2a6)2Q(u)−3I(u)

∫
TN

(F (x, u) + a4) dx

∫
TN

hu dx

and

T2(u) = χ′
(
Q(u)−1

∫
TN

(F (x, u) + a4) dx
)[
Q(u)−1

∫
TN

hu dx
]

+ T1(u).

Now, we consider

(3.19) J(u)− 1

2(1 + T1(u))
J ′(u)u.

If T1(u) = T2(u) = 0 and ψ(u) = 1, then (3.19) reduces to the left-hand side of (3.3), so
(3.16) follows from (3.2). Since 0 ≤ ψ(u) ≤ 1, if T1(u) and T2(u) are both small enough,
the calculation made in (3.3) when carried out for (3.19) leads to (3.2) with a6 replaced by
a larger constant which is smaller than 2a6. But this gives (3.16). So, in order to conclude
the proof of Lemma, it is enough to prove that T1(u), T2(u)→ 0 as M1 →∞.
Firstly, we can note that

|T1(u)| ≤ |χ′(· · · )|4a6Q(u)−1
∣∣∣∫

TN
hu dx

∣∣∣.
If u /∈ suppψ, T1(u) = 0 = T2(u). Otherwise, by using Lemma 2 and Lemma 4 we get

|T1(u)| ≤ α2Q(u)
1
µ−1 ≤ (M1 + 1)

1
µ−1 → 0 as M1 →∞.

By the structure of T2, we also deduce T2(u)→ 0 as M1 →∞.
�
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Taking into account the previous lemma, in order to verify (i) of Theorem 2, we need to
prove the following result

Lemma 6. J ∈ C1(Hs(TN ),R) and there is a constant M2 > 0 such that J satisfies (PS)

on ÂM2
≡ {u ∈ Hs(TN ) : J(u) ≥M2}.

Proof. By using (f1) and (f2), it is clear that I ∈ C1(Hs(TN ),R). Since χ ∈ C∞, and f
verifies (f1) and (f2), we can see that ψ and therefore J ∈ C1(Hs(TN ),R).
Now, let (um) ⊂ Hs(TN ) such that M2 ≤ J(um) ≤ K and J ′(um)→ 0.
Then for all large m,

ρ‖um‖Hs(TN ) +K ≥ J(um)− ρJ ′(um)um

=
(1

2
− ρ(1 + T1(um))

)
‖um‖2Hs(TN )

+ ρ(1 + T2(um))

∫
TN

umf(x, um) dx−
∫
TN

F (x, um) dx

+ [ρ(ψ(um) + T1(um))− ψ(um)]

∫
TN

hum dx(3.20)

where ρ is free for the moment.
For M2 sufficiently large, and therefore T1, T2 small, by (f3) we can choose ρ ∈ ( 1

µ ,
1
2 ) and

ε > 0 such that

(3.21)
1

2(1 + T1(um))
> ρ+ ε > ρ− ε > 1

µ(1 + T2(um))

uniformly in m.
Putting together (3.20), (3.21) and (1.5), and by using the Hölder and Young inequalities
as in (3.4), we obtain

(3.22) ρ‖um‖Hs(TN ) +K ≥ ε‖um‖2Hs(TN ) + c1‖um‖µLµ(TN )
− c2‖um‖Hs(TN ) − c3

which yields {um} is bounded in Hs(TN ).
Now, it is easy to see that

(3.23) J ′(um) = (1 + T1(um))um − P(um)

where P is a compact operator. Taking M2 so large such that |T1(um)| ≤ 1
2 and by using the

facts (um) is bounded and J ′(um) → 0, we can infer that (1 + T1(um))−1P(um) converges
along a subsequence. In virtue of (3.23), also (um) converges along a subsequence, and we

can conclude that J fulfills (PS) on ÂM2
.

�

Therefore, in order to prove Theorem 1, it is enough to show that J has an unbounded
sequence of critical values. For this reason, we are going to check (iii) and (iv) of Theorem
2. Regarding the condition (iv), it is easy to see that for every u ∈ W, with W ⊂ Hs(TN )
finite dimensional, there exist positive constants c1, c2, c3 and c4 (depending on W) such
that

J(u) ≤ c1‖u‖2Hs(TN ) − c2‖u‖
µ
Hs(TN )

+ c3‖u‖Hs(TN ) + c4 → −∞ as ‖u‖Hs(TN ) →∞(3.24)
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since µ > 2. We note that in (3.24), we used (1.5), |ψ(u)| < 1 and Hölder inequality to
estimate the term

∫
TN hu dx.

Finally, we prove the following result:

Lemma 7. There are constants β2 > 0 and j0 ∈ N depending on ‖h‖L2(TN ) such that for
all j ≥ j0,

(3.25) sup
ρ≥0

inf{J(u) : u ∈ V ⊥j−1, ‖u‖Hs(TN ) = ρ} ≥ β2j
(N+2s)−(N−2s)p

N(p−1) .

Proof. Let u ∈ ∂Bρ ∩ V ⊥j−1. Then by (f2), we can deduce that

(3.26) J(u) ≥ 1

2
ρ2 − α2‖u‖p+1

Lp+1(TN )
− α3 − ‖h‖L2(TN )‖u‖L2(TN ).

By using the interpolation inequality and Theorem 3, we get for all u ∈ Hs(TN )

(3.27) ‖u‖Lp+1(TN ) ≤ a7‖u‖aHs(TN )‖u‖
1−a
L2(TN )

,

where 2a = N(p−1)
s(p+1) .

From Theorem 4, we also have

(3.28) ‖u‖L2(TN ) ≤ λ
− 1

2
j ‖u‖Hs(TN )

for all u ∈ V ⊥j−1.
Putting together (3.26), (3.27) and (3.28), we can see that

(3.29) J(u) ≥ 1

2
ρ2 − α4λ

− (1−a)(p+1)
2

j ρp+1 − α3 − ‖h‖L2(TN )λ
− 1

2
j ρ.

Taking

ρ = ρj =
1

(4α4)
1
p−1

λ
(1−a)

2 ( p+1
p−1 )

j ,

we deduce that

(3.30) J(u) ≥ 1

4
ρ2
j − ‖h‖L2(TN )λ

− 1
2

j ρj − α3.

Recalling [13] that for the compact manifold M = TN the following Weyl’s formula for the
asymptotic distribution of the eigenvalues µj(M) of −∆ on M holds

µ
N
2
j (M) ∼ (2π)N

ωN

j

V ol(M)
as j →∞,

and by using (ii) of Theorem 4, we can see that there exist j0 ∈ N and α5 independent of j
such that

λj ≥ α5j
2s
N for j ≥ j0.

This together with (3.30) completes the proof of lemma.
�

Proof of Theorem 1. We consider the antipodal action of G = Z2 on Hs(TN ), and we take
W = R. Let us observe that for all j ∈ N, Vj is a G-invariant linear subspace of Hs(TN ),
dimVj = j and that V G = {0}. Putting together Lemma 1-Lemma 7, and (3.24), we can
see that the assumptions of Theorem 2 are satisfied. Then, there exist a sequence of critical
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values (dj) ⊂ R and (uj) ⊂ Hs(TN ) such that I(uj) = dj →∞ and I ′(uj) = 0. In particular,
being I ′(uj)uj = 0, we have

‖uj‖2Hs(TN ) =

∫
TN

f(x, uj)ujdx+

∫
TN

hujdx

= 2dj + 2

∫
TN

F (x, uj)dx+

∫
TN

hujdx.(3.31)

Then, by using (3.31), (f1), (f3) and h ∈ L2(TN ), it is easy to show that there exist α, β > 0
independent of j ∈ N such that ‖uj‖2Hs(TN ) ≥ αdj − β →∞ as j →∞.

�
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[11] X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Lapla-
cian, Adv. Math. 224 (2010), 2052–2093.

[12] L.A. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm.
Partial Differential Equations 32 (2007),1245–1260.

[13] I. Chavel, Eigenvalues in Riemanniann geometry, Including a chapter by Burton Randol. With an
appendix by Jozef Dodziuk. Pure and Applied Mathematics, 115. Academic Press, Inc., Orlando, FL,
1984. xiv+362 pp.

[14] M. Clapp, Critical point theory for perturbations of symmetric functionals, Comment. Math. Helvetici
71, 570–593 (1996).

[15] E. Colorado, A. de Pablo, and U. Sánchez, Perturbations of a critical fractional equation, Pacific J.

Math. 271 (2014), 65–85.
[16] E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bull.

Sci. Math. 136 (2012), 521–573.

[17] P. Felmer, A. Quaas and J.G. Tan, Positive solutions of nonlinear Schrödinger equation with the
fractional Laplacian Proc. Roy. Soc. Edinburgh Sect. A 142 (2012), no. 6, 1237–1262.

[18] P. Pucci, M. Xiang and B. Zhang, Multiple solutions for nonhomogeneous Schrödinger-Kirchhoff type

equations involving the fractional p-Laplacian in RN , Calc. Var. 54 (2015), 2785–2806.

[19] P.H. Rabinowitz, Multiple critical points of perturbed symmetric functionals, Trans. Amer. Math. Soc.
272 (1982), no. 2, 753–769.
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