
JEPE Vol 2, 2016, p. 27-36

THE ROLE OF NON-NEGATIVE POLYNOMIALS FOR RANK-ONE

CONVEXITY AND QUASI CONVEXITY

LUIS BANDEIRA AND PABLO PEDREGAL

Abstract. We stress the relationship between the non-negativeness of polynomials and

quasi convexity and rank-one convexity. In particular, we translate the celebrated theo-
rem of Hilbert ([3]) about non-negativeness of polynomials and sums of squares, into a

test for rank-one convex functions defined on 2 × 2-matrices. Even if the density for an

integral functional is a fourth-degree, homogeneous polynomial, quasi convexity cannot
be reduced to the non-negativeness of polynomials of a fixed, finite number of variables.

1. Introduction

It is well-known that the quasi convexity condition for a density φ(F) : Mm×N → R,
expressed through the inequality

(1.1)

∫
Q

φ(F +∇u(x)) dx ≥ φ(F)

valid for every F ∈ Mm×N , and every Q-periodic test field u : Q → Rm, is the necessary
and sufficient property for the integral functional

(1.2) I(v) =

∫
Ω

φ(∇v(y)) dy

to be (sequentially) weak lower semicontinuous ([7]). This, in turn, is one of the important
ingredients of the Direct Method of the Calculus of Variations to show existence of minimiz-
ers ([2], [8]) for integral functionals like the one in (1.2). Q is the unit cube in RN , while Ω
is a general, bounded, regular domain in RN .

This quasi convexity condition is hard to understand. Intimately related concepts, like
polyconvexity and rank-one convexity, were introduced and examined throughout the years.
See [1], [2]. In particular, a main open question that remains to be answered is the equiva-
lence of rank-one convexity and quasi convexity. It was shown not to be the case for m ≥ 3
in [10], but still remains unsolved for the case m = 2.
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If we want to stress the dependence of the inequality (1.1) both on F and on u, we would
write

Φ(F,u) ≡
∫
Q

[φ(F +∇u(x))− φ(F)] dx ≥ 0.

Put it in this form, we see that a certain functional depending on (F,u) should be non-
negative. To clarify the dependence on the field u, we can write, taking advantage of
periodicity,

u(x) =
1

2π

∑
n∈ZN

sin(2πn · x)an, an ∈ Rm,

∇u(x) =
∑

n∈ZN

cos(2πn · x)an ⊗ n,

and so

Φ(F, {an}) =

∫
Q

[
φ

(
F +

∑
n∈ZN

cos(2πn · x)an ⊗ n

)
− φ(F)

]
dx.

If we further restrict the nature of φ, to be a polynomial of a certain degree, then Φ itself will
be a polynomial of the same degree on a certain number of variables (possibly infinite), that
must be non-negative. We, hence, see that the issue of the non-negativeness of polynomials
might have some relevance for quasi convexity.

As a matter of fact, the non-negativeness of polynomials is a very old subject but still quite
alive. It is one main field of research in Real Algebraic Geometry with many applications
in different areas within Mathematics and outside Mathematics. See for instance the nice,
recent account [5]. Indeed, the issue of the non-negativeness of polynomials and rational
functions was the subject of Hilbert’s 17th problem ([4]). This problem was motivated by
his celebrated theorem on non-negative forms ([3]), and sum-of-squares criteria. Today, it is
known that the problem of deciding the non-negativeness of a multivariate polynomial (even
quartic) is a NP-hard problem ([9]), but there is an increasing body of knowledge about this
important problem in various contexts and circumstances ([5]).

Our main result, however, deals with rank-one convexity which is a necessary condition
for quasi convexity. It is usually formulated by requiring that the sections

t 7→ φ(F + ta⊗ n)

be convex for arbitrary matrices F, and vectors a, n. If φ is smooth, rank-one convexity
can, equivalently, be formulated in the form of the so-called Legendre-Hadamard condition

∇2φ(F) : (a⊗ n)⊗ (a⊗ n) ≥ 0

again for arbitrary matrices F, and vectors a, n.
Our main result can be formulated in the following terms. Consider φ : M2×2 → R, a

smooth (C2) function, and put

φ−(F) = sup
G
{−∇2φ(F) : G⊗G : det G = −1},

φ+(F) = inf
G
{∇2φ(F) : G⊗G : det G = 1}.

Theorem 1. Such φ is rank-one convex if and only if

φ−(F) ≤ φ+(F)
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for each matrix F.

By making use of Hilbert’s theorem about non-negative polynomials and sums of squares,
which we briefly recall in Section 2, we are able to translate it into a test for rank-one
convexity for smooth densities defined on M2×2. The connection between these two areas
is explained in Section 3 through the investigation of quadratic forms. We then extend the
main such fact to general, smooth densities (Section 4), and prove our Theorem 1 above.
Finally, in Section 5, we focus on quasi convexity by assessing to what extent these ideas
could lead somewhere.

2. Non-negative polynomials

The subject of non-negative polynomials has known a considerable expansion ever since
the pioneering work of D. Hilbert ([3]). For theoretical as well as practical reasons, it is
important to be able to decide when polynomials in several variables are non-negative. We
will see one such situation in this contribution.

A real polynomial p(x) in n variables x = (x1, x2, . . . , xn) is said to be non-negative if
p(x) ≥ 0 for all x ∈ Rn. From a representation like

(2.1) p(x) =
∑
i

pi(x)2, each pi, a polynomial,

one can immediately conclude that p is indeed non-negative. Because of this reason, and
lacking other criteria, the sum-of-squares test became the main focus of attention to decide
the non-negativity of polynomials. Hilbert ([3]) classified all situations in which this test
is valid, i.e., those situations in which non-negativity of polynomials is equivalent to being
decomposable as a sum of squares. To formulate such important result in more precise terms,
we will talk about “forms” (like quadratic forms), as being the corresponding homogeneous
representation of any polynomial, by introducing an additional variable, and dividing all
monomials by a suitable power of such new variable, according to the simple rule

p̃(x̃) = xdn+1p(x/xn+1), x̃ = (x, xn+1),

where d is the degree of p. Assume that p is a polynomial of degree d in n variables, with
associated form p̃. The result of Hilbert is:

Theorem 2 ([3]). Non-negative forms are the same as sums-of squares, in the following
three cases:

(1) n = 1: polynomials of arbitrary degree in one variable;
(2) d = 2: quadratic forms in any number of variables;
(3) d = 4, n = 2: quartic forms in three variables, or quartic polynomials in two

variables.

In all other cases, there are non-negative forms which are not sums of squares.

Hilbert later, and motivated by his result in [3], proposed his 17th problem in the famous
list [4]:

Does every non-negative polynomial have a representation as a sum of
squares of “rational” functions?

Equivalently, given p(x), he was asking about the existence of a polynomial q(x) so that
q(x)2p(x) is a sum of squares of polynomials. Artin proved in 1927 that this is so.
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The recent development of this area is astonishing. It has become quite specialized. See
[5], and references therein.

3. The fundamental fact

We pretend to find some interesting application of case (3) in Hilbert’s result, and relate
it to rank-one convexity. We will restrict attention to 2× 2-matrices, and densities defined
on them.

Consider a (constant) quadratic form associated with the symmetric 4× 4-matrix Q. We
will use henceforth the identification

(3.1) F =

(
F11 F12

F21 F22

)
7→ F = (F11, F12, F21, F22),

so that Q is understood as a quadratic form acting on four-component vectors. Put

D =


0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

 ,

and note that D : F⊗F = 2 detF if F is a 2×2-matrix understood through the identification
(3.1). Given a 4 × 4-symmetric matrix Q, we refer to it as being rank-one convex if the
associated quadratic form

φ(F) = Q : F⊗ F

is a rank-one convex function. Our main lemma follows.

Lemma 1. The quadratic form Q is rank-one convex if and only if there is a number α
such that Q = S + αD, and S is non-negative definite.

Though we use Hilbert’s theorem to prove this lemma, it was already shown in an ele-
mentary way by P. Marcellini in [6].

Proof. The “if” part is immediate. Indeed, if Q = S + αD with S non-negative, then for a
rank-one matrix G

Q : G⊗G = S : G⊗G + αD : G⊗G = S : G⊗G + 2α detG = S : G⊗G ≥ 0.

The remarkable fact is the converse.
Suppose Q is rank-one convex, i.e.

(3.2) Q : (x⊗ y)⊗ (x⊗ y) ≥ 0

for arbitrary vectors x = (x1, x2), y = (y1, y2). Condition (3.2) is a short-hand form of the
typical rank-one convex condition ∑

i,j,k,l=1,2

Qijklxiyjxkyl ≥ 0

under the identification (3.1). Because of homogeneity, we can equivalently put

Q : (x̃⊗ ỹ)⊗ (x̃⊗ ỹ) ≥ 0

for x̃ = (x, 1), x = x1/x2, and likewise for ỹ = (y, 1). In this way, this last inequality is
telling us that the fourth-degree polynomial

P4(x, y) = Q : [(x, 1)⊗ (y, 1)]⊗ [(x, 1)⊗ (y, 1)]
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in the two variables (x, y) is non-negative. We can also write

P4(x, y) = Q : X⊗X, X = (xy, x, y, 1).

By Hilbert’s theorem, we can find, at least, one representation of P4 as a sum of squares.
But because D : X⊗X = 0, all possible representations of P4 are of the form

P4(x, y) = (Q− αD) : X⊗X

for α ∈ R. This can be checked more explicitly if we write

P4(x, y) =
(
xy x y 1

)
Q11 Q12 Q13 Q14

Q21 Q22 Q23 Q24

Q31 Q32 Q33 Q34

Q41 Q42 Q43 Q44



xy
x
y
1

 ,

perform the multiplication with some care, and take into account the symmetry of Q. Note
how the coefficient corresponding to the monomial xy is obtained through the entries Q14,
Q23, Q32, Q41, but there is no further ambiguity or freedom. Hilbert’s theorem implies then
that there should be at least one real number α, such that

(Q− αD) : X⊗X = (CX)⊗ (CX), (Q− αD) = CTC,

for a certain matrix C. Hence Q− αD is non-negative definite. This proves the claim. �

The “if” part of this lemma holds for more general situations where dimensions of matrices
are larger. The crucial strength, however, is the “only if” part which is only valid for 2× 2-
matrices.

4. Some consequences and some examples

The following is a classical result for quadratic forms.

Theorem 3 ([2]). Let φ(F) = FTAF = A : F⊗ F be a quadratic form. Then

(1) φ is rank-one convex iff φ is quasi convex.
(2) if one of the two dimensions is 2, then

φ, polyconvex ⇐⇒ φ, quasi convex ⇐⇒ φ, rank-one convex.

(3) if both dimensions are greater than 3, in general rank-one convexity does not imply
polyconvexity.

Through Lemma 1, the second statement of this theorem admits some improvement in
the case in which both dimensions are 2.

Corollary 1. Every rank-one convex quadratic form on 2 × 2-matrices is the sum of a
convex quadratic form, and a multiple of the determinant (and so it is polyconvex).

This main fact can be used directly for non-quadratic, smooth functions.

Corollary 2. A smooth (C2) function φ : M2×2 → R is rank-one convex if and only if
there is a scalar function α : M2×2 → R and a symmetric, non-negative definite matrix
field S : M2×2 →M4×4 such that

∇2φ(F) = S(F) + α(F)D.

We can further explore the condition for a matrix Q to enjoy the property that there is
some real α so that Q− αD is non-negative definite.
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Proposition 1. There is some real number α such that Q− αD is non-negative definite if
and only if

sup
G
{−Q : G⊗G : det G = −1} ∈ R ≤ inf

G
{Q : G⊗G : det G = 1} ∈ R.

Proof. The proof is easy if we use homogeneity in the condition

0 ≤ (Q− αD) : G⊗G = Q : G⊗G− 2α detG

for every matrix G. �

The proof of Theorem 1 is the result of putting together Corollary 2, and this las propo-
sition.

As an illustration, we reexamine two typical examples. They can be found in [2]. The
first one is

φ(F) = |F|4 − 2(detF)2.

It is elementary to find that

1

4
∇2φ(F) : G⊗G = 2(F : G)2 + |F|2|G|2 − (DF : G)2 − 2 detF detG.

By the Cauchy-Schwarz classical inequality, we realize that

φ−(F) = sup
G
{−∇2φ(F) : G⊗G : det G = −1} ≤ −8 detF,

φ+(F) = inf
G
{∇2φ(F) : G⊗G : det G = 1} ≥ −8 detF,

and so φ is indeed rank-one convex. The second one is

(4.1) φ(F) = |F|4 − 4√
3
|F|2 detF.

It is also straightforward to check that

1

4
∇2φ(F) = 2F⊗ F + |F|21− 2√

3
detF1− 4√

3
F⊗DF− 1√

3
|F|2D,

where 1 stands for the identity matrix of size 4× 4.
Corollary 2 enables us to change the last term to an arbitrary contribution of the form

α(F)D in order to produce a non-negative definite matrix

(4.2) 2F⊗ F + |F|21− 2√
3

detF1− 4√
3
F⊗DF− 1√

3
|F|2D + α(F)D.

If we set α(F) to the form (α− 4/
√

3)|F|2, for α a constant, a few careful calculations yield
that the eigenvalues of (4.2) are

λ =
(

2± α

2

)
|F|2 − 4√

3
det(F)

λ = 4|F|2 − 4
√

3 det(F)± 1

2

√√√√[(α+
8√
3

)2

+ 16

]
|F|4 − 16

(
α+

8√
3

)
|F|2 det(F).

For the choice α = −2/
√

3, it turns out that these eigenvalues are non-negative: for the first
pair of eigenvalues, it is clear that the minimum is 0, and that it is attained for F = 0, while
for the second pair, some elementary computations lead also to 0 as the minimum, attained
when det(F) = (

√
3/4)|F|2.
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5. Quasi convexity

Let φ : M2×2 → R be a density. As stated in the Introduction, the quasi convexity
condition amounts to having ∫

Q

φ(F +∇u(x)) dx ≥ φ(F)

for every matrix F, and every periodic mapping u : Q→ R2. Q is the unit cube in R2. Put

Φ(F,u) ≡
∫
Q

φ(F +∇u(x)) dx− φ(F).

Quasi convexity takes place if the functional Φ is always non-negative. Variable F does
not require a particular analysis as it is a finite-dimensional variable, but u does. In fact,
information on how φ behaves on sums of the form F + G, G = ∇u, might be helpful in
saying something relevant.

To see this issue more clearly, let us review the quadratic case in which we take

(5.1) φ(F) = P (F) = (1/2)FTAF,

a quadratic form for a 4 × 4-, symmetric matrix A. F is identified with a four-component
vector through (3.1). We can write

P(G;F) ≡ P (F + G)− P (F) =
1

2
(FT + GT )A(F + G)− 1

2
FTAF.

Because the variable G stands for the gradient ∇u(x), and a subsequence integration over
the unit cubeQ is to be performed, we immediately see that periodicity leads to the vanishing
of the two integrals ∫

Q

∇u(x)TAF dx,
∫
Q

FTA∇u(x) dx.

Hence, ∫
Q

P(∇u(x);F) dx =
1

2

∫
Q

∇u(x)TA∇u(x) dx.

If, as we did earlier,

u(x) =
1

2π

∑
n∈ZN

sin(2πn · x)an, an ∈ Rm,

∇u(x) =
∑

n∈ZN

cos(2πn · x)an ⊗ n,(5.2)

we find∫
Q

P(∇u(x);F) dx =
1

2

∫
Q

∑
n,m∈ZN

∫
Q

cos(2πn · x) cos(2πm · x) dx (an ⊗ n)TA(am ⊗m).

But the integrals ∫
Q

cos(2πn · x) cos(2πm · x) dx
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vanish always except when n = ±m, in which case the value is strictly positive. We conclude
then that the quasi convexity condition∫

Q

P(∇u(x);F) dx ≥ 0

is equivalent to ∑
n∈ZN

(an ⊗ n)TA(an ⊗ n) ≥ 0.

The arbitrariness of the full family of coefficients {an} implies that the non-negativeness of
the sum can only occur when each term is non-negative

(a⊗ n)TA(a⊗ n) ≥ 0

for all a ∈ Rm, n ∈ RN . This is exactly the rank-one convex condition, and so, for a
quadratic density as the one in (5.1), rank-one convexity is equivalent to quasi convexity.

We would like to explore how far this viewpoint might take us for a homogeneous, four-
degree polynomial. More specifically, consider a fully symmetric, constant fourth-order
tensor T : (R2×2)2 → R, acting on matrices, and take P (X) = T(X,X,X,X) for X ∈ R2×2,
a homogeneous fourth degree polynomial in the entries of X. Then, for

P(G;F) ≡ P (F + G)− P (F)

we can write

P(G;F) = T(F + G,F + G,F + G,F + G)−T(F,F,F,F),

that is

(5.3) P(G;F) = T(G,G,G,G) + 4T(G,G,G,F) + 6T(G,G,F,F) + 4T(G,F,F,F).

As indicated above, variable G stands for the gradient ∇u(x) of a smooth, Q-periodic
mapping, and we are interested in examining the sign of the functional

Φ(F,u) ≡
∫
Q

P(∇u(x);F) dx.

Due to the periodic boundary conditions on u, the integral of the last term in (5.3) drops
out, and we are left with

Φ(F,u) =

∫
Q

[T(∇u(x),∇u(x),∇u(x),∇u(x))(5.4)

4T(∇u(x),∇u(x),∇u(x),F) + 6T(∇u(x),∇u(x),F,F)] dx.

It is easy to write down necessary conditions for quasi convexity by simply selecting partic-
ular groups of terms in (5.2).

(1) For three terms, we can take n3 = n1 ± n2, {n1,n2}, independent, ai ∈ Rm,

∇u(x) = cos(2πn1 · x)a1 ⊗ n1 + cos(2πn2 · x)a2 ⊗ n2

+ cos(2πn3 · x)a3 ⊗ n3,

and derive necessary conditions by taking this gradient to the quasi convexity in-
equality.
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(2) Similarly, for four terms, put n1 + n2 + n3 = n4, ai ∈ Rm, and take the gradient

∇u(x) = cos(2πn1 · x)a1 ⊗ n1 + cos(2πn2 · x)a2 ⊗ n2

+ cos(2πn3 · x)a3 ⊗ n3 + cos(2πn4 · x)a4 ⊗ n4

to the quasi convexity inequality.

In trying to say something interesting about sufficiency for quasi convexity, the crucial
issue is whether there are basic families of gradients of the above form with a finite number
of terms that do not interact with each other through the corresponding trigonometric
integrals. Namely, if we put

∇u = ∇u1 +∇u2, ∇ui =
∑
n∈Zi

cos(2πn · x)an ⊗ n, i = 1, 2,Zi ⊂ Z2, even,

and take this decomposition to (5.4), we would have terms of three kinds, according to the
three terms for Φ(F,u). The first one is

T(∇u,∇u,F,F) =T(∇u1 +∇u2,∇u1 +∇u2,F,F)

=T(∇u1,∇u1,F,F) + T(∇u2,∇u2,F,F)

+ 2T(∇u1,∇u2,F,F).

According to the above trigonometric integrals, we would like to have that the terms in ∇u1

and ∇u2 cannot interact with each other. This is possible as long as∫
Q

cos(2πn1 · x) cos(2πn2 · x) dx = 0

whenever n1 ∈ Z1, n2 ∈ Z2, and for this, it suffices to have Z1 ∩Z2 = ∅. Similarly, for cubic
terms:

T(∇u,∇u,∇u,F) =T(∇u1 +∇u2,∇u1 +∇u2,∇u1 +∇u2,F)

=T(∇u1,∇u1,∇u1,F) + T(∇u2,∇u2,∇u2,F)

+ 3T(∇u1,∇u1,∇u2,F) + 3T(∇u1,∇u2,∇u2,F),

and so, we would like to have∫
Q

cos(2πn1 · x) cos(2πn2 · x) cos(2πn3 · x) dx = 0

whenever n1,n2 ∈ Z1, n3 ∈ Z2, or n1,n2 ∈ Z2, n3 ∈ Z1. This condition forces to ensure
that n1,n2 ∈ Zi implies n1±n2 ∈ Zi, for each i = 1, 2, but then there is no way to separate a
given gradient into two disjoint sums of terms not interacting through the cubic terms. The
situation is even worse for fourth-degree terms, so it seems as if there is no hope of isolating
a necessary and sufficient condition for quasi convexity for fourth-degree polynomials based
on the non-negativity of certain polynomials of a finite number of variables.
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CIMA and Departamento de Matemática, Escola de Ciências e Tecnologia, Universidade de
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