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EXISTENCE AND REGULARITY RESULTS FOR FULLY NONLINEAR

OPERATORS ON THE MODEL OF THE PSEUDO PUCCI’S

OPERATORS

ISABEAU BIRINDELLI, FRANÇOISE DEMENGEL

Abstract. This paper is devoted to the existence and Lipschitz regularity of viscosity
solutions for a class of very degenerate fully nonlinear operators, on the model of the

pseudo p-Laplacian. We also prove a strong maximum principle.

1. Introduction

Recall that the pseudo-p-Laplacian, for p > 1 is defined by:

∆̃pu :=

N∑
1

∂i(|∂iu|p−2∂iu).

When p > 2, it is degenerate elliptic at any point where even only one derivative ∂iu is zero.
Using classical methods in the calculus of variations, equation

(1.1) ∆̃pu = f

has solutions in W 1,p
loc , when for example f ∈ Lp

′

loc. Even if the existence results do not
differ from the one for the usual p-Laplacian i.e. ∆pu = div(|∇u|p−2∇u), the regularity
raises high difficulties. For the usual p-Laplacian , the reader can look at [16], [10], in a
non exhaustive manner . However, coming back to the pseudo p-Laplacian, when p < 2,
Lipschitz regularity is a consequence of [11].

When p > 2 things are more delicate. Note that in [7], for some fixed non negative
numbers δi, the following widely degenerate equation was considered

(1.2)
∑
i

∂i((|∂iu| − δi)p−1
+

∂iu

|∂iu|
) = f.

The authors proved that the solutions of (1.2) are in W 1,q
loc for any q < ∞, when f ∈ L∞loc.

As a consequence, by the Sobolev Morrey’s imbedding, the solutions are Hölder continuous
for any exponent γ < 1.

The Lipschitz interior regularity for (1.1) has been recently proved by the second author
in [9]. The regularity obtained concerns Lipschitz continuity for viscosity solutions. Since
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weak solutions are viscosity solutions, (see also [2]), she obtains Lipschitz continuity for weak
solutions when the forcing term is in L∞loc.

At the same time, in [6], the local Lipschitz regularity of the solutions of (1.2) has been

proved when either N = 2, p ≥ 2 and f ∈ W 1,p′

loc or N ≥ 3, p ≥ 4, and f ∈ W 1,∞
loc . Remark

that (1.2) can also be written formally as∑
i

(|∂iu| − δi)p−2
+ ∂iiu =

f

(p− 1)
.

This expression has an obvious meaning in the framework of viscosity solutions and with
the methods used in [9], one can prove, in particular, that the solutions are locally Hölder’s
continuous for any exponent γ < 1, when f ∈ L∞loc. Unfortunately the Lipschitz continuity
for viscosity solutions of (1.2) cannot be obtained in the same way.

We now state the precise assumptions on the fully nonlinear operators that will be con-
sidered in this paper and we state our main result. Fix α > 0 and, for any q ∈ RN , let
Θα(q) be the diagonal matrix with entries |qi|

α
2 on the diagonal, and let S be in the space

of symmetric matrices in RN .
In the following the norm |X| denotes for a symmetric matrix X, |X| =

∑
i |λi(X)|,

sometimes for convenience of the computations we shall also use ||X|| = (
∑
|λi|2)

1
2 ≡

tr(tXX))
1
2 .

Let F be defined on RN × RN × S, continuous in all its arguments, which satisfies
F (x, 0,M) = F (x, p, 0) = 0 and

(H1) For any M1 ∈ S and M2 ∈ S, M2 ≥ 0, for any x ∈ RN

(1.3) λtr(Θα(q)M2Θα(q)) ≤ F (x, q,M1 +M2)− F (x, q,M1) ≤ Λtr(Θα(q)M2Θα(q)).

(H2) There exist γF ∈]0, 1] and cγF > 0 such that for any (q,X) ∈ RN × S, for any
(x, y) ∈ (RN )2

(1.4) |F (x, q,X)− F (y, q,X)| ≤ cγF |x− y|γF |q|α|X|.

(H3) There exists ωF a continuous function on R+ such that ωF (0) = 0, and as soon as
(X,Y ) satisfy for some m > 0

−m
(

I 0
0 I

)
≤
(
X 0
0 Y

)
≤ m

(
I −I
−I I

)
then

F (x,m(x− y), X)− F (y,m(x− y), Y ) ≤ ωF (m|x− y|
α+2
α+1 ) + o(m|x− y|

α+2
α+1 ).

(H4) There exists cF such that for any p, q ∈ RN , for all x ∈ RN , X ∈ S

|F (x, p,X)− F (x, q,X)| ≤ cF (

i=N∑
i=1

||pi|α − |qi|α|)|X|

Example of operators that satisfy (H1) to (H4) are

F (x, p,X) := tr(L(x)Θα(p)XΘα(p)L(x)),

when L(x) is a Lipschitz and bounded matrix such that
√
λI ≤ L ≤

√
ΛI.
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Other examples are the pseudo-Pucci’s operators, for 0 < λ < Λ

M+
α (q,X) = Λtr((Θα(q)XΘα(q))+)− λtr((Θα(q)XΘα(q))−)

= sup
λI≤A≤ΛI

tr(AΘα(q)XΘα(q)).

and

M−α (q,X) = −M+
α (q,−X).

satisfy all the assumptions above. The case α = 0 reduces to the standard extremizing
uniformly elliptic Pucci operators. In the appendix we shall check that M+

α (q,X) satisfies
(H4).

We can also consider

F (x, p,X) := a(x)M±α (p,X),

where a is a Lipschitz function such that a(x) ≥ ao > 0.
We shall also consider equations with lower order terms. Precisely, let h be defined on

RN ×RN , continuous with respect to its arguments, which satisfies on any bounded domain
Ω

(1.5) |h(x, q)| ≤ ch,Ω(|q|1+α + 1)

Our main result is the following.

Theorem 1.1. Let Ω be a bounded domain and f be continuous and bounded in Ω and
suppose that (H1), (H2), (H4) and (1.5) hold. Let u be any viscosity solution of

(1.6) F (x,∇u,D2u) + h(x,∇u) = f in Ω,

Then, for any Ω′ ⊂⊂ Ω , there exists CΩ′ , such that for any x and y in Ω′

|u(x)− u(y)| ≤ CΩ′ |x− y|.

This will be a consequence of the more general result given in Theorem 2.1, Section 2.
We shall construct in Section 3 a super-solution of (1.6) which is zero on the boundary.

Theorem 1.1, and the validity of the comparison principle, allows to prove, using Ishii’s
version of Perron’s method, the following existence result :

Theorem 1.2. Suppose that Ω is a bounded C2 domain and let F and h satisfy (H1), (H2),
(H3), (H4) and (1.5). Then, for any f ∈ C(Ω), there exists u a viscosity solution of{

F (x,∇u,D2u) + h(x,∇u) = f(x) in Ω
u = 0 on ∂Ω.

Furthermore u is Lipschitz continuous in Ω .

Finally in the last section we prove that the strong maximum principle holds for solutions
of equation (1.6) under the hypothesis of Theorem 1.2.

We end this introduction by recalling that many questions concerning these very degen-
erate operators are still open. For example it is not clear whether a sort of Alexandrov,
Bakelman, Pucci ’s inequality hold true, similarly to the cases treated by Imbert in [12].
Finally the next open question concerning the regularity of solutions would be to prove that
the solutions are in fact C1. Even in the cases f = 0 and/or N = 2 it does not seem easy to
do.
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2. Proof of Lipschitz regularity.

Let F and Ω be as in Theorem 1.1. We shall now state and prove our main result:

Theorem 2.1. Let f and k be continuous and bounded in a bounded open set Ω. Let F and
h satisfy (H1), (H2), (H4) and (1.5). Suppose that u is a bounded USC sub-solution of

F (x,∇u,D2u) + h(x,∇u) ≥ f in Ω

and that v is a bounded LSC super-solution of

F (x,∇v,D2v) + h(x,∇v) ≤ k in Ω.

Then, for any Ω′ ⊂⊂ Ω, there exists CΩ′ , such that for any (x, y) ∈ (Ω′)2

u(x) ≤ v(y) + sup
Ω

(u− v) + CΩ′ |x− y|.

We start by recalling some general facts.
If ψ : RN × RN → R, let D1ψ denotes the gradient in the first N variables and D2ψ the

gradient in the last N variables.
In the proof of Theorem 2.1 we shall need the following technical lemma.

Lemma 2.2. Suppose that u and v are respectively USC and LSC functions such that, for
some constant M > 1 and for some C2 function Φ

ψ(x, y) := u(x)− v(y)−M |x− xo|2 −M |y − xo|2 −MΦ(x, y)

has a local maximum in (x̄, ȳ).
Then for any ι > 0, there exist Xι, Yι such that

(MD1Φ(x̄, ȳ) + 2M(x̄− xo), Xι) ∈ J̄2,+u(x̄),

(−MD2Φ(x̄, ȳ)− 2M(ȳ − xo),−Yι) ∈ J̄2,−v(ȳ)

with

−(
1

ι
+ |A|+ 1)

(
I 0
0 I

)
≤
(
Xι − 2M I 0

0 Yι − 2M I

)
≤ (A+ ιA2) +

(
I 0
0 I

)
and A = MD2Φ(x̄, ȳ).

This is a direct consequence of a famous Lemma by Ishii [14]. For the convenience of the
reader the proof of Lemma 2.2 is given in the appendix. In the sequel, we will use Lemma
2.2 with Φ(x, y) := g(x−y), and g is some radial function C2 except at 0, that will be chosen
later. Then

MD2Φ(x̄, ȳ) = M

(
D2g(x̄− ȳ) −D2g(x̄− ȳ)
−D2g(x̄− ȳ) D2g(x̄− ȳ)

)
.

Choosing ι = 1
1+4M |D2g(x)| , and defining H̄(x) := D2g(x) + 2ιD2g2(x), one has

M( D2Φ + ι(D2Φ)2) = M

(
H̄(x̄− ȳ) −H̄(x̄− ȳ)
−H̄(x̄− ȳ) H̄(x̄− ȳ)

)
.

Remark that M |D2Φ(x̄, ȳ)| = 2M |D2g(x̄− ȳ)|. We give some precisions on the choice of g.
We will assume that there exists ω ∈ C(R+) ∪ C2(R+?), such that g(x) = ω(|x|) and :

(2.1) ω(0) = 0, ω(s) > 0, ω′(s) > 0 and ω′′(s) < 0 on ]0, so[, for some given so ≤ 1.
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For x 6= 0, it is well known that Dg(x) = ω′(|x|) x
|x| and

D2g(x) =

(
ω′′(|x|)− ω′(|x|)

|x|

)
x⊗ x
|x|2

+
ω′(|x|)
|x|

I.

For ι ≤ 1
4|D2g(x)| , defining γH(r) = 1 + 2ι

(
ω′(r)
r

)
∈ [ 1

2 ,
3
2 ], and βH(r) = 1 + 2ιω′′(r) ∈ [ 1

2 ,
3
2 ]

then

(2.2) D2g + 2ι(D2g)2(x) =

(
βH(|x|)ω′′(|x|)− γH(|x|)ω

′(|x|)
|x|

)
x⊗ x
|x|2

+ γH(|x|)ω
′(|x|)
|x|

I.

For |x| < 1 and ε > 0, we shall use the following set:

I(x, ε) := {i ∈ [1, N ], |xi| ≥ |x|1+ε}

and the diagonal matrix Θ(x) := Θα(q) for q = M ω′(|x|)xi
|x| i.e. with entries Θii(x) =

M
α
2

∣∣∣ω′(|x|)xi|x|

∣∣∣α2 . From now on, if X is a symmetric matrix, µi(X) for i = 1, . . . , N indicate

the ordered eigenvalues of X.
A consequence of (2.2) is the following Proposition proved in [9].

Proposition 2.3 ([9]). Using the notations above,

(1) If α ≤ 2, for all x 6= 0, |x| < so,

(2.3) µ1

(
Θ(x)H̄(x)Θ(x)

)
≤ M1+α

2
N−

α
2 ω′′(|x|)(ω′(|x|))α < 0.

(2) If α > 2, for all x 6= 0, |x| < so, for any ε > 0 such that I(x, ε) 6= ∅, and such that

(2.4) βH(|x|)ω′′(|x|)(1−N |x|2ε) + γH(|x|)N |x|2εω
′(|x|)
|x|

≤ ω′′(|x|)
4

< 0,

then

µ1

(
Θ(x)H̄(x)Θ(x)

)
≤M1+α 1−N |x|2ε

#I(x, ε)
(ω′(|x|))αω

′′(|x|)
4
|x|(α−2)ε.(2.5)

[Proof of Theorem 2.1] It is clear that it is sufficient to prove the result when Ω = B1 is
the ball of center 0 and radius 1 and Ω′ = Br for some r < 1.

Borrowing ideas from [1], [5], [15], [13], for some xo ∈ Br we define the function

ψ(x, y) = u(x)− v(y)− sup(u− v)−Mω(|x− y|)−M |x− xo|2 −M |y − xo|2;

M is a large constant and ω is a function satisfying (2.1), both to be defined more precisely
later .

If there exists M , independent of xo ∈ Br, such that ψ(x, y) ≤ 0 in B2
1 , by taking x = xo

and, using |xo − y| ≤ 2, one gets

u(xo)− v(y) ≤ sup(u− v) + 3Mω(|xo − y|).
So making xo vary we obtain that, for any (x, y) ∈ B2

r ,

u(x)− v(y) ≤ sup(u− v) + 3Mω(|x− y|).
This proves the theorem when ω(s) behaves like s near zero. Note that this will be

obtained once the case where ω(s) = sγ is treated for γ ∈]0, 1[, i.e the Hölder’s analogous
result.
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In order to prove that ψ(x, y) ≤ 0 in B2
r , suppose by contradiction that the supremum of

ψ is positive and achieved on (x̄, ȳ) ∈ B1
2

. For some δ > 0, with δ < so, we choose M such
that

(2.6) M(1− r)2 > 8(|u|∞ + |v|∞), and M > 1 +
2|u|∞ + 2|v|∞

ω(δ)
.

This implies that |x̄−xo|, |ȳ−xo| < 1−r
2 . Hence, by (2.6), x̄ and ȳ are in B 1+r

2
in particular

they are in B1. Furthermore, always using (2.6), the positivity of the supremum of ψ, the
value chosen for M and the increasing behaviour of ω before so, lead to |x̄− ȳ| < δ.

As it will be shown later the contradiction will be found by choosing δ small enough
depending on (r, α, λ,Λ, N).

We proceed using Lemma 2.2 and so, for all ι > 0 there exist Xι and Yι such that

(qx, Xι) ∈ J
2,+
u(x̄) and (qy,−Yι) ∈ J

2,−
v(ȳ)

with qx = q + 2M(x̄ − xo), qy = q − 2M(x̄ − xo), q = Mω′(|x̄ − ȳ|) x̄−ȳ
|x̄−ȳ| . Furthermore,

still using the above notations i.e. g(x) = ω(|x|), and recalling that we have chosen ι ≤
1

1+4M |D2g(x̄−ȳ)| , for H̄ = (D2g(x̄− ȳ)) + 2ιD2g(x̄− ȳ))2), we have that

(2.7)

−( 1
ι + 2M |H̄|)

(
I 0
0 I

)
≤

(
Xι − (2M + 1)I 0

0 Yι − (2M + 1)I

)

≤M
(

H̄ −H̄
−H̄ H̄

)
.

From now on we will drop the ι for X and Y . Recall that Θ(q) := Θα(q) is the diagonal

matrix such that (Θ)ii(q) = (|qi|)
α
2 .

In order to end the proof we will prove the following claims.
Claims. There exists c > 0 depending only on α,N, λ,Λ, r and there exists τ̂ > 0, such

that, if δ is small enough and |x̄− ȳ| < δ, the matrix Θ(X + Y )Θ satisfies

(2.8) µ1(Θ(X + Y )Θ) ≤ −cMα+1|x̄− ȳ|−τ̂

There exist τi < τ̂ and ci for i = 1, . . . , 4 depending on α,N, λ,Λ, r such that the four
following assertions hold :

(2.9) for all j ≥ 2, µj(Θ(X + Y )Θ) ≤ c1Mα+1|x̄− ȳ|−τ1 ,

(2.10) |F (x̄, qx, X)− F (x̄, q,X)| ≤ c2Mα+1|x̄− ȳ|−τ2

(similarly |F (ȳ, qy,−Y )− F (ȳ, q,−Y )| ≤ c2Mα+1|x̄− ȳ|−τ2)

(2.11) |F (x̄, q,X)− F (ȳ, q,X)| ≤ c3Mα+1|x̄− ȳ|−τ3 ,
(similarly |F (x̄, q,−Y )− F (ȳ, q,−Y )| ≤ c3Mα+1|x̄− ȳ|−τ3)

(2.12) |h(x̄, qx)|+ |h(ȳ, qy)| ≤ c4Mα+1|x̄− ȳ|−τ4 .
From all these claims, by taking δ small enough such that for c > 0 defined in (2.8),
c2δ
−τ̂2+τ̂ + c3δ

τ̂−τ3 + c4δ
τ̂−τ4 + Λc1δ

τ̂−τ1 < λc
2 , one gets
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F (x̄, qx, X)− F (ȳ, qy,−Y ) + h(x̄, qx)− h(ȳ, qy) ≤ −λc
2
Mα+1|x̄− ȳ|−τ̂ .

Observe that δ depends only on λ,Λ, α,N, r. Finally, one can conclude as follows

f(x̄) ≤ F (x̄, qx, X) + h(x̄, qx)

≤ F (ȳ, qy,−Y ) + h(ȳ, qy)− λc

2
Mα+1|x̄− ȳ|−τ̂

≤ −λc
2
Mα+1|x̄− ȳ|−τ̂ + k(ȳ).

This contradicts the fact that f and k are bounded, as soon as δ is small or M is large
enough.

In conclusion, in order to end the proof it is sufficient to prove (2.8), (2.9), (2.10), (2.11),
(2.12). But we will need to distinguish the cases ω(s) = sγ and ω(s) ' s both when α ≤ 2
and when α ≥ 2.

To prove the claims, we will use inequality (2.7) which has three important consequences
for Θ(X + Y − 2(2M + 1)I)Θ:

(1) As it is well known the second inequality in (2.7) gives
(X + Y − 2(2M + 1)I) ≤ 0, then also Θ(X + Y − 2(2M + 1)I)Θ ≤ 0. In particular,
for any j = 1, . . . , N

(2.13) µj(Θ(X + Y )Θ) ≤ 6M |Θ|2.

(2) By Proposition 2.3, Θ(H̄)Θ has a large negative eigenvalue, given respectively by
(2.3) in the case α ≤ 2 and by (2.5) when α ≥ 2. Let e be a corresponding

eigenvector. Multiplying by Θ

(
e
−e

)
on the right and by its transpose on the left

of (2.7), one gets, that

teΘ(X + Y − 2(2M + 1)Id)Θe ≤ 4te(Θ(H̄)Θ)e.

In particular, using (2.3), one obtains that when α ≤ 2,

(2.14) µ1(Θ(X + Y − 2(2M + 1)I)Θ) ≤ 2N−1M1+αω′′(|x̄− ȳ|)(ω′(|x̄− ȳ|))α;

which in turn implies that

(2.15) µ1(Θ(X + Y )Θ) ≤ 2N−1M1+αω′′(|x̄− ȳ|)(ω′(|x̄− ȳ|))α + 6M |Θ|2.

When α > 2, if (2.4) holds, using (2.5), one obtains

(2.16) µ1(Θ(X + Y )Θ) ≤
1−N |x̄− ȳ|2ε

#I(x̄− ȳ, ε)
M1+αω′′(|x̄− ȳ|)(ω′(|x̄− ȳ|))α|x̄− ȳ|(α−2)ε + 6M |Θ|2.

(3) Finally, using (2.7), we obtain an upper bound for |X|, |Y | i.e.

(2.17) |X|, |Y | ≤ 6M(|D2g(x̄− ȳ)|+ 1),

remarking that |H̄| ≤ 3
2 |D

2g(x̄− ȳ)|.
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Proofs of the claims when ω(s) = sγ and α ≤ 2.
In this case, ω′(s) = γsγ−1 and ω′′(s) = −γ(1− γ)sγ−2,

q = Mγ|x̄− ȳ|γ−1 x̄− ȳ
|x̄− ȳ|

, qx = q + 2M(x̄− xo), qy = q − 2M(ȳ − xo).

By (2.15), since γ ∈ (0, 1),

µ1(Θ(X + Y )Θ) ≤ −2γ(1− γ)N−1Mα+1|x̄− ȳ|γ−2+(γ−1)α + 6M |Θ|2,

while 6|Θ|2 ≤ 6Mαγα|x̄− ȳ|(γ−1)α. Consequently, as soon as δ is small enough,

µ1(Θ(X + Y )Θ) ≤ −2γ(1− γ)

N
Mα+1|x̄− ȳ|γ−2+(γ−1)α + 6M1+αγα|x̄− ȳ|(γ−1)α

≤ −γ 1− γ
N

Mα+1|x̄− ȳ|γ−2+(γ−1)α.

This proves (2.8) with τ̂ = 2− γ + (1− γ)α, and c = γ 1−γ
N .

Now using (2.13) and the above estimate on M |Θ|2, (2.9) holds with τ1 = (1− γ)α < τ̂ .
Recall that by (2.17),

(2.18) |X|, |Y | ≤ 6M(γ(N − γ) + 1)|x̄− ȳ|γ−2.

Consequently (2.11) holds with τ3 = (2−γ)+(1−γ)α−γF and c3 = 6cγF γ
α(γ(N−γ)+1)

using hypothesis (1.4).
To prove (2.10) we will use the following universal inequality : For any z and t in R

||z|α − |t|α| ≤ sup(1, α)|z − t|inf(1,α)(|z|+ |t|)(α−1)+

in the form ( for any i ∈ [1, N ]),

(2.19) ||qxi |α − |qi|α| ≤ sup(1, α)Mα|x̄i − ȳi|(γ−1)(α−1)+ .

Hence using (H4) and (2.18), (2.10) holds with τ2 = (2 − γ) + (1 − γ)(α − 1)+, and
c2 = 6cFN sup(1, α)γα(γ(N − γ) + 1). Finally, (2.12) holds with τ4 = (1 − γ)(1 + α) and
c4 = 2ch,Ω((γ + 3)1+α + 1) .

Proofs of the claims when ω(s) = sγ and α ≥ 2.
The function ω is the same than in the previous case. In order to use the result in Proposition
2.3 we need (2.4) to be satisfied. For that aim we take ε > 0 such that ε < inf

(
γF
2 ,

1−γ
2

)
.

Let

(2.20) δN :=

[
(1− γ)

2(4− γ)N

] 1
2ε

and assume δ < δN . In particular, for α ≥ 2, using the definition of δN in (2.20), for
|x̄− ȳ| < δ ≤ δN the set I(x̄− ȳ, ε) 6= ∅, indeed observe that there exists i ∈ [1, N ] such that

|x̄i − ȳi|2 ≥
|x̄− ȳ|2

N
≥ |x̄− ȳ|2+2ε.
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Furthermore,

1

2
ω′′(|x̄− ȳ|)(1−N |x̄− ȳ|2ε) +

3N

2
|x̄− ȳ|2εω

′(|x̄− ȳ|)
|x̄− ȳ|

≤ 1

2
ω′′(|x̄− ȳ|)

+
N

2
|x̄− ȳ|2ε(γ(1− γ) + 3γ)|x̄− ȳ|γ−2

≤ 1

4
γ(γ − 1)|x̄− ȳ|γ−2

=
ω′′(|x̄− ȳ|)

4
,

and then (2.4) is satisfied. We are in a position to apply (2.16), and Θ(X + Y )Θ satisfies

µ1(Θ(X + Y )Θ) ≤ −
(

1−N |x̄− ȳ|2ε

#I(|x̄− ȳ, ε)

)
γ(1− γ)Mα+1|x̄− ȳ|γ−2+(γ−1)α+ε + 6M |Θ|2,

hence remarking that 1−N ||x̄−ȳ|2ε
#I(|x̄−ȳ,ε) ≥

1
2N

µ1(Θ(X + Y )Θ) ≤ −(
γ(1− γ)

2N
)Mα+1|x̄− ȳ|γ−2+(γ−1)α+ε

+6M1+αγα|x̄− ȳ|(γ−1)α

≤ −(
γ(1− γ)

4N
)Mα+1|x̄− ȳ|γ−2+(γ−1)α+ε

for |x̄− ȳ| ≤ δ small enough. Hence (2.8) holds with τ̂ = 2− γ + (1− γ)α− ε.
Note that (2.9), (2.11) (2.10) and (2.12) have already been proved in the previous case,

since the sign of α − 2 does not play a role. Recall then that τ1 = (−γ + 1)α, while
τ3 = (2− γ) + (1− γ)α− γF < τ̂ by the choice of ε.

Finally τ2 = (2− γ) + (α− 1)(γ − 1) and (2.12) still holds with τ4 = (1− γ)(1 + α).

Let us observe that in the hypothesis of Theorem 2.1 we have proved that u and v satisfy,
for any γ ∈ (0, 1),

(2.21) u(x) ≤ v(y) + sup
Ω

(u− v) + cγ,r|x− y|γ .

This will be used in the next cases.
Proofs of the claims when ω(s) ' s and α ≤ 2.
We choose τ ∈ (0, inf(γF ,

1
2 ,

α
2 )) and γ ∈] τ

inf( 1
2 ,
α
2 )
, 1[. We define, for s ≤ so, ω(s) = s−ωos1+τ

and, for s > so, ω(s) = soτ
1+τ , ωo is chosen so that ω is extended continuously.

We suppose that δ < 1 and δτωo(1 + τ) < 1
2 , which ensures that

(2.22) for s < δ,
1

2
≤ ω′(s) < 1, ω(s) ≥ s

2
.

We suppose that

(2.23) M = sup

(
(1 + τ)2(|u|∞ + |v|∞)

δτ
, 1 +

4(|u|∞ + |v|∞)

(1− r)2

)
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which implies in particular (2.6). So we derive that |x̄− ȳ| ≤ δ and x̄, ȳ ∈ B 1+r
2

.

Here

|D2g(x̄− ȳ)| = N − 1

|x̄− ȳ|
+ ωoτ(1 + τ)|x̄− ȳ|−1+τ ≤ (N − 1 + ωoτ(1 + τ))|x̄− ȳ|−1,

and |H̄| ≤ 3

2
|D2g(x̄− ȳ)|.

Then (2.17) is nothing else but

(2.24) |X|,|Y | ≤ 6M(|D2g(x̄− ȳ)|+ 1) ≤ 6M(N + ωoτ(1 + τ))|x̄− ȳ|−1.

Furthermore q = Mω′(|x̄− ȳ|) x̄−ȳ
|x̄−ȳ| , q

x = q + 2M(x̄− xo), qy = q − 2M(ȳ − xo).
Using (2.21) in B 1+r

2
, for all γ < 1,

M |x̄− xo|2 +M |ȳ − xo|2 + sup(u− v) ≤ u(x̄)− v(ȳ) ≤ sup(u− v) + cγ,r|x̄− ȳ|γ

and then

(2.25) |ȳ − xo|+ |x̄− xo| ≤ 2

(
cγ,r|x̄− ȳ|γ

M

) 1
2

.

Then taking δ small enough, more precisely if (cγ,rδ
γ)

1
2 < 1

64 by (2.22),

(2.26)
M

2
≤ |q| ≤M,

M

4
≤ |qx|, |qy| ≤ 5M

4
.

Then we derive from (2.15) that

µ1(Θ(X + Y )Θ) ≤ −ωoτ(1 + τ)

N
Mα+1|x̄− ȳ|τ−1 + 6M |Θ|2.

Since M |Θ|2 ≤ M1+α, (2.8) holds (as soon as δ is small enough) with τ̂ = 1 − τ , and

c = ωoτ(1+τ)
2N , (2.9) holds with

τ1 = 0 < 1− τ, and c1 = 6,

while (2.11) is satisfied with

τ3 = −γF + 1 < 1− τ, and c3 = 12cγF (N + ωoτ(1 + τ)).

To check (2.10), we use (2.19), (2.24) , (2.25) and (2.26)

| |qxi |α − |qi|α| |X| ≤ 6(N + ωoτ(1 + τ))M1+
inf(α,1)

2 c
inf(1,α)

2
γ,r |x̄− ȳ|

inf(1,α)γ
2 |x̄− ȳ|−1.

Hence, for inf(1, α)γ > 2τ , (2.10) holds with

τ2 = 1− inf(1, α)

2
γ and c2 = 6cF sup(1, α)N(N − 1 + ωoτ(1 + τ))(cγ,r)

α
2

if α ≤ 1 and

c2 = αcF 6N(N − 1 + ωoτ(1 + τ))(cγ,r)
α
2 3α−1), if α ≥ 1.

Finally τ4 = 0 and c4 = ch,Ω(21+α + 1) are convenient for (2.12).

Proofs of the claims when ω(s) ' s and α > 2.
In order to use the result in Proposition 2.3 we need (2.4) to be satisfied. For that aim

we take τ , ε > 0 and γ such that
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(2.27) 0 < τ <
γF
α
, 1 > γ > τα, and

τ

2
< ε < inf

( γ
2 − τ
α− 2

,
γF − τ
α− 2

)
.

Let us define ω, so, as in the case α ≤ 2. We suppose δ < δN where

δN :=

(
ωo(1 + τ)τ

2N(3 + ωoτ(1 + τ))

) 1
2ε−τ

.(2.28)

In particular, since there exists i such that |x̄i − ȳi|2 ≥ 1
N |x̄ − ȳ|

2 ≥ |x̄ − ȳ|2+2ε, by (2.28),

I(x̄− ȳ, ε) 6= ∅. Furthermore, recall that by (2.28), 1 ≥ ω′(|x̄− ȳ|) ≥ 1
2 and

1

2
ω′′(|x̄− ȳ|) +

N

2
ωoτ(1 + τ)|x̄− ȳ|τ−1+2ε +

3

2
N |x̄− ȳ|2ε−1ω′(|x̄− ȳ|)

≤ 1

2
ω′′(|x̄− ȳ|) +

N

2
(ωoτ(1 + τ) + 3)|x̄− ȳ|2ε−1

≤ −1

4
ωo(1 + τ)τ |x̄− ȳ|−1+τ =

ω′′(|x̄− ȳ|)
4

,

and then (2.4) holds. We still assume that (2.23) holds.
As in the case α ≤ 2, using (2.21), for δ small enough, (2.26) is still true.
The hypothesis (2.28) ensures, using also (2.5) that

µ1(Θ(X + Y )I)Θ) ≤ −ωoτ(1 + τ)

2N
M1+α|x̄− ȳ|−1+τ+(α−2)ε + 6M |Θ|2

and then, by (2.13) and 6M |Θ|2 ≤ 6M1+α, by (2.27) and for δ small enough, (2.8) holds

with τ̂ = (2−α)ε+1−τ and c = ωoτ(1+τ)
4N . Furthermore (2.9) holds with τ1 = 0, and c1 = 6.

As in the previous case, (2.24) is true, and then, (2.11) holds with

τ3 = 1− γF < 1− τ + (2− α)ε and c3 = 6cγF (N − 1 + ωoτ(1 + τ)).

Now using (2.19), (2.24), (2.26), (2.25), one has

||qxi |α− |qi|α||X| ≤ 6α(N +ωoτ(1 + τ))M |x̄−xo|(
5M

4
)α−1M |x̄− ȳ|−1 ≤ c3|x̄− ȳ|

γ
2−1M1+α

and then (2.10) holds with

τ2 = 1− γ

2
< 1− τ + (2− α)ε and c2 = αNc

1
2
γ,r(2)α−16(N − 1 + ωoτ(1 + τ)).

Note finally that

|h(x̄, qx)|+ |h(ȳ, qy)| ≤ 2ch

(
5M

4

)1+α

and then (2.12) holds with τ4 = 0 and c4 = 22+αch .
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3. Existence of solutions.

Using Perron’s method, see e.g. [8], the existence’s Theorem 1.2 will be proved once the
following Propositions are known:

Proposition 3.1. Suppose that Ω is a bounded domain in RN and that F satisfies (H1),
(H2), (H3), (H4). Suppose that h is continuous and it satisfies (1.5). Let u be a USC
sub-solution of

F (x,∇u,D2u) + h(x,∇u)− β(u) ≥ f in Ω

and v be a LSC super-solution of

F (x,∇v,D2v) + h(x,∇v)− β(v) ≤ k in Ω

where β, f and k are continuous. Suppose that either β is increasing and f ≥ k in Ω, or β
is nondecreasing and f > k in Ω.

If u ≤ v on ∂Ω, then u ≤ v in Ω.

Proposition 3.2. Suppose that the assumptions in Proposition 3.1 hold, and that f is
continuous and bounded and β is increasing. Suppose that u is a USC sub-solution, and u
is a LSC super-solution of the equation

F (x,∇u,D2u) + h(x,∇u)− β(u) = f, in Ω,

such that u = u = ϕ on ∂Ω. Then there exists u a viscosity solution of the equation with
u ≤ u ≤ u in Ω, and u = ϕ on ∂Ω.

The proofs of these two Propositions can be done by using the classical tools, see [8].

Remark 1. One can get the same existence’s result when β = 0, by using a standard
approximation procedure and the stability of viscosity solutions.

Nevertheless the proof of Theorem 1.2 requires the existence of a super-solution which is
zero on the boundary when β = 0 which is the object of the next proposition:

Proposition 3.3. Suppose that Ω is a bounded C2 domain, and that F and h satisfy the
hypothesis in Proposition 3.1. Then for any f continuous and bounded, there exist a super-
solution and a sub-solution of

F (x,∇u,D2u) + h(x,∇u) = f in Ω

which are zero on the boundary.

Proof of Proposition 3.3 : Let diam(Ω) denote the diameter of Ω and we recall that the
distance to the boundary d satisfies everywhere that d is semi concave or equivalently there
exists C1 such that

D2d ≤ C1I.

In the following we will make the computations as if d be C2, it is not difficult to see that
the required inequalities hold also in the viscosity sense.

Recall that
∑N
i=1(∂id)2 = 1, hence

N∑
i=1

|∂id|α ≤ N, while

N∑
1

|∂id|α+2 ≥ N−
α
α+2 .
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For some M large that will be chosen later, we define

ψ(x) = M(1− 1

(1 + d(x))k
).

Clearly

∇ψ = M
k∇d

(1 + d)k+1
, D2ψ =

Mk

(1 + d)k+2
((1 + d)D2d− (k + 1)∇d⊗∇d)

and then, one has

F (x,∇ψ,D2ψ) ≤ (Mk)α+1

(1 + d)k+2+(k+1)α
[(1 + d)M+

α (∇d,D2d)

−(k + 1)M−α (∇d,∇d⊗∇d)]

≤ (Mk)α+1

(1 + d)k+2+(k+1)α
[N(1 + d)ΛC1

∑
|∂id|α − (k + 1)λ

∑
|∂id|α+2]

≤ (Mk)α+1

(1 + d)k+2+(k+1)α
[N2(1 + diam(Ω))ΛC1 − λ(k + 1)N−

α
α+2 ]

and

h(x,∇ψ) ≤ Ch
(Mk)α+1

(1 + d)(k+1)(1+α)
.

In particular we can choose k such that

1

2
λ(k + 1)N−

α
α+2 = (1 + diam(Ω))(ΛC1N

2 + Ch).

Hence

F (x,∇ψ,D2ψ) + h(x,∇ψ) ≤ − (k + 1)λN−
α
α+2 (Mk)α+1

4(1 + d)k+2+(k+1)α
.

For k as above we can choose M large enough in order that

F (x,∇ψ,D2ψ) + h(x,∇ψ) ≤ −‖f‖∞.
A similar computation leads to:

F (x,∇(−ψ), D2(−ψ)) + h(x,∇(−ψ)) ≥ ‖f‖∞.

4. The strong Maximum Principle

Theorem 4.1. Under the hypothesis of Theorem 1.1, suppose that u is a supersolution of
the equation F (x,∇u,D2u) ≤ 0 in a domain Ω and that u ≥ 0. Then either u > 0 in Ω or
u ≡ 0.

Proof. Without loss of generality we suppose that u > 0 on B(x1, R), with R = |x1 − xo|
and u(xo) = 0, and we can assume that the annulus R

2 ≤ |x − x1| ≤ 3R
2 is included in Ω.

Let w be defined as
w(x) = m(e−c|x−x1| − e−cR)

for some c and m to be chosen.
For simplicity of the calculation we will suppose that x1 = 0 and we denote by r :=

|x − x1| = |x|. We choose m so that on r = R
2 , w ≤ u in the same spirit of simplicity we

replace m by 1.



184 ISABEAU BIRINDELLI, FRANÇOISE DEMENGEL

One has

∇w =
−cx
r
e−cr, D2w = e−cr

(
(
c2

r2
+

c

r3
)(x⊗ x)− c

r
I

)
and then, using the usual notation Θ(∇w), H := Θ(∇w)D2wΘ(∇w), i.e.

Hec(α+1)r =
( c
r

)α(
(
c2

r2
+

c

r3
)~i⊗~i− c

r
~j ⊗~j

)
where ~i =

∑
|xi|

α
2 xiei and ~j =

∑
|xi|

α
2 ei.

Since, by hypothesis (H1), F (x,∇w,D2w) ≥ e−c(α+1)rM−(H), where
M−(X) := infλI≤A≤ΛI(trAX) is the extremal Pucci operator, we need to evaluate the
eigenvalues of H and in particular prove that

M−(H) > 0.

For that aim let us note that (~i,~j)⊥ is in the kernel of H. We introduce a = c2

r2 + c
r3 and

b = − c
r . Then the non zero eigenvalues of Hc−αecr(1+α) are given by

µ± =
a|~i|2 + b|~j|2

2
±

√√√√(a|~i|2 + b|~j|2
2

)2

− ab(|~i|2|~j|2 − (~i ·~j)2).

Note that there exist constants ci(N,α) for i = 1, · · · 4, such that

c1(N,α)

(
R

2

)α+2

≤ c1(N,α)rα+2 ≤ |~i|2 ≤ c2(N,α)rα+2 ≤ c2(N,α)

(
3R

2

)α+2

and

c3(N,α)

(
R

2

)α
≤ c3(N,α)rα ≤ |~j|2 ≤ c4(N,α)rα ≤ c4(N,α)

(
3R

2

)α
.

Note that one can choose c large enough in order that for some constant c5(N,α)

a|~i|2 + b|~j|2 ≥ c1(N,α)

(
R

2

)α+2
c2

r2
− c4(N,α)

(
3R

2

)α
c

r

≥ c5(N,α)c2.

On the other hand one can assume c large enough in order that

4|ab|(|~i|2|~j|2 − (~i ·~j)2) ≤ 4
c3

r2
c2(N,α)c4(N,α)

(
3R

2

)2α+2

≤ c6(N,α)c3

<

[(
λ+ Λ

Λ− λ

)2

− 1

]
(c5(N,α)c2))2

≤

[(
λ+ Λ

Λ− λ

)2

− 1

](
a|~i|2 + b|~j|2

)2

.
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In particular this implies

λµ+ + Λµ− = (
a|~i|2 + b|~j|2

2
) ×(

(λ+ Λ) + (λ− Λ)

√
1 + 4

|ab|(|~i|2|~j|2 − (~i ·~j)2)

(a|~i|2 + b|~j|2)2

)
> 0

i.e. M−(H) > 0. Using the comparison principle in the annulus {R2 ≤ |x − x1| ≤ 3R
2 } one

obtains that u ≥ w.
Observe that w touches u by below on xo, and then, since w is C2 around xo, by the

definition of viscosity solution

F (xo,∇w(xo), D
2w(xo)) ≤ 0.

This contradicts the above computation. �

Remark 2. As it is well known, the above proof can be used to see that on a point of the
boundary where the interior sphere condition is satisfied, the Hopf principle holds.

Appendix A. Proof of Lemma 2.2

The proof of Lemma 2.2 is based on the following Lemma by Ishii

Lemma A.1. [14] Let A be a symmetric matrix on R2N . Suppose that U ∈ USC(RN ) and
V ∈ USC(RN ) satisfy U(0) = V (0) and, for all (x, y) ∈ (RN )2,

U(x) + V (y) ≤ 1

2
(tx,t y)A

(
x
y

)
.

Then, for all ι > 0, there exist XU
ι ∈ S, XV

ι ∈ S such that

(0, XU
ι ) ∈ J̄2,+U(0), (0, XV

ι ) ∈ J̄2,+V (0)

and

−(
1

ι
+ |A|)

(
I 0
0 I

)
≤
(
XU
ι 0

0 XV
ι

)
≤ (A+ ιA2).

We can now start the proof of Lemma 2.2. The second order Taylor’s expansion for Φ
around (x̄, ȳ) , gives that for all ε > 0 there exists r > 0 such that, for |x− x̄|2 + |ȳ−y|2 ≤ r2,

u(x)− u(x̄) − 〈(MD1Φ(x̄, ȳ) + 2M)(x̄− xo), x− x̄〉+

+v(ȳ)− v(y) − 〈(MD2Φ(x̄, ȳ) + 2M)(ȳ − xo), y − ȳ〉

≤ 1

2

(
t(x− x̄),t (y − ȳ)

)
(MD2Φ(x̄, ȳ) + εI)

(
x− x̄
y − ȳ

)
+M(|x− x̄|2 + |y − ȳ|2).

We now introduce the functions U and V defined, in the closed ball |x− x̄|2 + |y− ȳ|2 ≤ r2,
by

U(x) = u(x+ x̄)− 〈MD1Φ(x̄, ȳ) + 2M(x̄− xo), x〉 − u(x̄)−M |x|2

and
V (y) = −v(y + ȳ)− 〈MD2Φ(x̄, ȳ) + 2M(ȳ − xo), y〉+ v(ȳ)−M |y|2

which we extend by some convenient negative constants in the complementary of that ball
(see [14] for details). Observe first that
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(0, XU ) ∈ J2,+
U(0), (0, XV ) ∈ J2,−

V (0)

is equivalent to

(MD1Φ(x̄, ȳ) + 2M(x̄− xo), XU + 2M I) ∈ J2,+
u(x̄)

and

(−MD2Φ(x̄, ȳ)− 2M(ȳ − xo),−XV − 2M I) ∈ J2,−
v(ȳ).

We can apply Lemma A.1, which gives that, for any ι > 0, there exists (Xι, Yι) such that

(MD1Φ(x̄, ȳ) + 2M(x̄− xo), Xι) ∈ J̄2,+u(x̄)

and

(−MD2Φ(x̄, ȳ)− 2M(ȳ − xo),−Yι) ∈ J̄2,−v(ȳ)

Choosing ε such that 2ει|MD2Φ(x̄, ȳ)|+ ε+ ι(ε)2 < 1, one gets

−(
1

ι
+ |MD2Φ|+ 1)

(
I 0
0 I

)
≤

(
Xι − 2M I 0

0 Yι − 2M I

)
≤ (MD2Φ + ι(MD2Φ)2) +

(
I 0
0 I

)
.

This ends the proof of Lemma 2.2.

Finally, as promised in the introduction, we here check that M+
α (q,X) satisfies (H4).

First, recalling the properties of the Pucci’s operators we get

M+
α (p,X) ≤ M+

α (p,X) +M+(Θα(p)XΘα(p)−Θα(q)XΘα(q))

≤ M+
α (p,X) + (Λ + λ)|(Θα(p)XΘα(p)−Θα(q)XΘα(q))|

= M+
α (p,X) +

Λ + λ

2
(|(Θα(p)−Θα(q))X(Θα(p) + Θα(q))

+ ((Θα(p) + Θα(q))XΘα(p)−Θα(q)|)

Then one has using for X symmetric ||X|| ≤ |X| ≤
√
N ||X||, and observing that for any

matrices A B, ||AB|| = ||BA||

|(Θα(p)−Θα(q))X(Θα(p) + Θα(q)) + ((Θα(p) + Θα(q))XΘα(p)−Θα(q)|
≤
√
N ||(Θα(p)−Θα(q))X(Θα(p) + Θα(q))

+ ((Θα(p) + Θα(q))XΘα(p)−Θα(q)||
≤ 2

√
N ||X(Θα(p)−Θα(q))(Θα(p) + Θα(q))||

≤ 2
√
N ||X|| ||(Θα(p)−Θα(q))(Θα(p) + Θα(q))||

≤ 2
√
N |X| ||(Θα(p))2 − (Θα(q))2||

≤ 2
√
N |X|

∑
i

||pi|α − |qi|α|
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